Part Number Hot Search : 
7N471 15000 IR1176SS 1SS355 2RJKR RLPBF A2000 NMF2409D
Product Description
Full Text Search
 

To Download STM32L151XD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. february 2013 doc id 022027 rev 6 1/140 1 STM32L151XD stm32l152xd ultra-low-power 32-bit mcu arm-b ased cortex-m3, 384kb flash, 48kb sram, 12kb eeprom, lcd, usb, adc, dac, memory i/f datasheet ? production data features ultra-low-power platform ? 1.65 v to 3.6 v power supply ? -40c to 85c/105c temperature range ? 0.35 a standby mode (3 wakeup pins) ? 1.3 a standby mode + rtc ? 0.65 a stop mode (16 wakeup lines) ? 1.5 a stop mode + rtc ? 11 a low-power run mode ? 238 a/mhz run mode ? 10 na ultra-low i/o leakage ? 8 s wakeup time core: arm 32-bit cortex ? -m3 cpu ? from 32 khz up to 32 mhz max ? 33.3 dmips peak (dhrystone 2.1) ? memory protection unit up to 34 capacitive sensing channels crc calculation unit, 96-bit unique id reset and supply management ? low power, ultrasafe bor (brownout reset) with 5 selectable thresholds ? ultralow power por/pdr ? programmable voltage detector (pvd) clock sources ? 1 to 24 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? high speed internal 16 mhz factory- trimmed rc (+/- 1%) ? internal low power 37 khz rc ? internal multispeed low power 65 khz to 4.2 mhz ? pll for cpu clock and usb (48 mhz) pre-programmed bootloader ? usb and usart supported serial wire debug, jtag and trace up to 116 fast i/os (102 i/os 5v tolerant), all mappable on 16 external interrupt vectors memories ? 384 kb flash with ecc (with 2 bank of 192 kb enabling rww capability) ? 48 kb ram ? 12 kb of true eeprom with ecc ? 128 byte backup register ? memory interface controller supporting sram, psram and nor flash lcd driver for up to 8x40 segments (contrast adjustment, blinking mode, step-up converter) rich analog peripherals (down to 1.8v) ? 3x operational amplifier ? 12-bit adc 1 msps up to 40 channels ? 12-bit dac 2 ch with output buffers ? 2x ultra-low-power-comparators (window mode and wake up capability) dma controller 12x channels 12x peripherals communication interface ? 1x usb 2.0 (internal 48 mhz pll) ? 5x usart ? 3x spi 16 mbits/s (2x spi with i2s) ? 2x i2c (smbus/pmbus) ? 1x sdio interface 11x timers: 1x 32-bit, 6x 16-bit with up to 4 ic/oc/pwm channels, 2x 16-bit basic timer, 2x watchdog timers (independent and window) table 1. device summary reference part number stm32l151xx stm32l151qd stm32l151rd stm32l151vd stm32l151zd stm32l152xx stm32l152qd stm32l152rd stm32l152vd stm32l152zd lqfp144 (20 20 mm) lqfp100 (14 14 mm) lqfp64 (10 10 mm) ufbga132 (7 7 mm) wlcsp64 (0.400 mm pitch) www.st.com
contents STM32L151XD stm32l152xd 2/140 doc id 022027 rev 6 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 arm ? cortex?-m3 core with mpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.3 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.4 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 low power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23 3.6 gpios (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.7 memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8 fsmc (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.9 dma (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10 lcd (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11 adc (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11.1 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11.2 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.12 dac (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.13 operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.14 ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27 3.15 system configuration controller and routi ng interface . . . . . . . . . . . . . . . 27
STM32L151XD stm32l152xd contents doc id 022027 rev 6 3/140 3.16 touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.17 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17.1 general-purpose timers (tim2, tim3, tim4, tim5, tim9, tim10 and tim11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17.2 basic timers (tim6 and tim7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17.3 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17.4 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17.5 window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.18 communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.18.1 i2c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.18.2 universal synchronous/asynchronous receiver transmitter (usart) . . 30 3.18.3 serial peripheral interface (spi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18.4 inter-integrated sound (i2s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18.5 sdio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18.6 universal serial bus (usb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.19 crc (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 31 3.20 development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 electrical characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1.7 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.2 embedded reset and power control block characteristics . . . . . . . . . . . 56 6.3.3 embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.4 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
contents STM32L151XD stm32l152xd 4/140 doc id 022027 rev 6 6.3.5 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.6 internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.7 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.8 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.9 fsmc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.10 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3.11 absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 95 6.3.12 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.13 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.14 nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3.15 tim timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.16 communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.17 i2s characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.18 sdio characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.19 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.20 dac electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.21 operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.22 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3.23 comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3.24 lcd controller (stm32l152xd only) . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
STM32L151XD stm32l152xd list of tables doc id 022027 rev 6 5/140 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. ultra-low-power stm32l15xxd device features and peripheral counts . . . . . . . . . . . . . . . 11 table 3. functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 16 table 4. cpu frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16 table 5. functionalities depending on the working mode (from run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 table 6. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 7. internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 8. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 9. stm32l15xxd pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table 10. alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 table 11. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 12. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 13. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 14. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 15. embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 16. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9 table 17. current consumption in run mode, code with data processing running from flash. . . . . . 60 table 18. current consumption in run mode, code wit h data processing running from ram . . . . . . 61 table 19. current consumption in sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 table 20. current consumption in low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 table 21. current consumption in low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 22. typical and maximum current consumptions in stop mode . . . . . . . . . . . . . . . . . . . . . . . . 65 table 23. typical and maximum current consumptions in standby mode . . . . . . . . . . . . . . . . . . . . . 66 table 24. typical and maximum timings in low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 table 25. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 26. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 27. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 28. hse 1-24 mhz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 table 29. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 30. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 31. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 32. msi oscillator ch aracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 33. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 34. ram and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 35. flash memory and data eeprom c haracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 36. flash memory and data eeprom endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 82 table 37. asynchronous non-multiplexed sram/psram/nor read timings . . . . . . . . . . . . . . . . . . 84 table 38. asynchronous non-multiplexed sram/psram/nor write timings . . . . . . . . . . . . . . . . . . 85 table 39. asynchronous multiplexed psram/nor read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 table 40. asynchronous multiplexed psram/nor write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 table 41. synchronous multiplexed nor/psram read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 42. synchronous multiplexed psram write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 table 43. synchronous non-multiplexed nor/psram read timings . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 44. synchronous non-multiplexed psram write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 table 45. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 table 46. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 table 47. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
list of tables STM32L151XD stm32l152xd 6/140 doc id 022027 rev 6 table 48. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 49. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 50. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 table 51. output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 table 52. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 53. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 table 54. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 table 55. i 2 c characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 table 56. scl frequency (f pclk1 = 32 mhz, v dd = 3.3 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 table 57. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 table 58. i2s characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 table 59. sdio characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 table 60. usb startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 table 61. usb dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 table 62. usb: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 10 table 63. adc clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 table 64. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 table 65. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 table 66. r ain max for f adc = 16 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 table 67. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 table 68. operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 table 69. temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1 table 70. comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 table 71. comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 table 72. lcd controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 table 73. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 126 table 74. lqpf100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 128 table 75. lqfp64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 130 table 76. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array mechanical data. . . . 131 table 77. wlcsp64, 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . . 133 table 78. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 table 79. stm32l15xxd ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
STM32L151XD stm32l152xd list of figures doc id 022027 rev 6 7/140 list of figures figure 1. ultra-low-power stm32l15xxd block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 3. stm32l15xzd lqfp144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 4. stm32l15xqd ufbga132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 5. stm32l15xvd lqfp100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 6. stm32l15xrd lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 figure 7. stm32l15xrd wlcsp64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 figure 8. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 9. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 10. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 11. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 12. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 13. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 figure 14. high-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 figure 15. hse oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 figure 16. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 figure 17. asynchronous non-multiplexed sram/psram/nor read waveforms . . . . . . . . . . . . . . . 83 figure 18. asynchronous non-multiplexed sram/psram/nor write waveforms . . . . . . . . . . . . . . . 84 figure 19. asynchronous multiplexed psram/nor read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 85 figure 20. asynchronous multiplexed psram/nor write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 86 figure 21. synchronous multiplexed nor/psram read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 figure 22. synchronous multiplexed psram write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 figure 23. synchronous non-multiplexed nor/psram read timings . . . . . . . . . . . . . . . . . . . . . . . . . 92 figure 24. synchronous non-multiplexed psram write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 25. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 figure 26. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 figure 27. i 2 c bus ac waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 figure 28. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 figure 29. spi timing diagram - slave mode and cpha = 1 (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 figure 30. spi timing diagram - master mode (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 figure 31. i 2 s slave timing diagram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 figure 32. i 2 s master timing diag ram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 figure 33. sdio timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 figure 34. usb timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 110 figure 35. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 figure 36. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 figure 37. maximum dynamic current consumption on v ref+ supply pin during adc conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 figure 38. power supply and reference decoupling (v ref+ not connected to v dda ). . . . . . . . . . . . . 116 figure 39. power supply and reference decoupling (v ref+ connected to v dda ). . . . . . . . . . . . . . . . 116 figure 40. 12-bit buffered /non-buffered dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 figure 41. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 125 figure 42. recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 figure 43. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 127 figure 44. recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 figure 45. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 129 figure 46. recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 figure 47. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package outline . . . . 131
list of figures STM32L151XD stm32l152xd 8/140 doc id 022027 rev 6 figure 48. wlcsp64, 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . . 132 figure 49. thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
STM32L151XD stm32l152xd introduction doc id 022027 rev 6 9/140 1 introduction this datasheet provides the ordering information and mechanical device characteristics of the STM32L151XD and stm32l152xd ultra-low-power arm cortex?-based microcontrollers product line. stm32l15xd devices are microcontrollers with a flash memory density of 384 kbytes. the ultra-low-power stm32l15xxd family includes devices in 5 different package types: from 64 pins to 144 pins. depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. these features make the ultra-low-power stm32l15xxd microcontroller family suitable for a wide range of applications: medical and handheld equipment application control and user interface pc peripherals, gaming, gps and sport equipment alarm systems, wired and wirel ess sensors, video intercom utility metering this STM32L151XD and stm32l152xd datasheet should be read in conjunction with the stm32l1xxxx reference manual (rm0038). the document "getting started with stm32l1xxx hardware development" an3216 gives a hardware implementation overview. both documents are available from the stmicroelectronics website www.st.com. for information on the cortex?-m3 core please refer to the cortex?-m3 technical reference manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337g. figure 1 shows the general block diagram of the device family.
description STM32L151XD stm32l152xd 10/140 doc id 022027 rev 6 2 description the ultra-low-power stm32l15xxd incorporates the connectivity power of the universal serial bus (usb) with the high-performance arm cortex?-m3 32-bit risc core operating at a 32 mhz frequency, a memory protection unit (mpu), high-speed embedded memories (flash memory up to 384 kbytes and ram up to 48 kbytes), a flexible static memory controller (fsmc) interface (for devices with packages of 100 pins and more) and an extensive range of enhanced i/os and peripherals connected to two apb buses. the stm32l15xxd devices offer three operational amplifiers, one 12-bit adc, two dacs, two ultra-low-power comparators, one general-purpose 32-bit timer, six general-purpose 16- bit timers and two basic timers, which can be used as time bases. moreover, the stm32l15xxd devices contain standard and advanced communication interfaces: up to two i2cs, three spis, two i2s, one sdio, three usarts, two uarts and a usb. the stm32l15xxd devices offer up to 34 capacitive sensing channels to simply add touch sensing functionality to any application. they also include a real-time clock and a set of backup registers that remain powered in standby mode. finally, the integrated lcd controller has a built-in lcd voltage generator that allows you to drive up to 8 multiplexed lcds with contrast independent of the supply voltage. the ultra-low-power stm32l15xxd operates from a 1.8 to 3.6 v power supply (down to 1.65 v at power down) with bor and from a 1.65 to 3.6 v power supply without bor option. it is available in the -40 to +85 c temperature range, extended to 105c in low power dissipation state. a comprehensive set of power-saving modes allows the design of low- power applications.
STM32L151XD stm32l152xd description doc id 022027 rev 6 11/140 2.1 device overview table 2. ultra-low-power stm32l15xxd device features and peripheral counts peripheral stm32l15xrd stm32l15xvd stm32l15xqd stm32l15xzd flash (kbytes) 384 data eeprom (kbytes) 12 ram (kbytes) 48 fsmc no multiplexed only yes timers 32 bit 1 general-purpose 6 basic 2 communication interfaces spi/(i2s) 3 / (2) i 2 c 2 usart 5 usb 1 sdio 1 gpios 51 83 109 115 operation amplifiers 3 12-bit synchronized adc number of channels 1 21 1 25 1 40 1 40 12-bit dac number of channels 2 2 lcd (1) com x seg 1 4x32 or 8x28 1 4x44 or 8x40 comparators 2 capacitive sensi ng channels 23 33 34 max. cpu frequency 32 mhz operating voltage 1.8 v to 3.6 v (down to 1.65 v at power-down) with bor option 1.65 v to 3.6 v without bor option operating temperatures ambient temperature: ?40 to +85 c junction temperature: ?40 to +105 c packages lqfp64, wlcsp64 lqfp100 ufbga132 lqfp144 1. stm32l152xx devices only.
description STM32L151XD stm32l152xd 12/140 doc id 022027 rev 6 2.2 ultra-low-power device continuum the ultra-low-power stm32l15xxd, stm32l162xd, stm32l15xxc and stm32l162xc are fully pin-to-pin and software compatible. besides the full compatibilit y within the family, the devices are part of stmicroelectronics microcontr ollers ultra-low-power strategy which also includes stm8l101xx and stm8 l15xx devices. the stm8l and stm32l families allow a continuum of performance, peripherals, system architecture and features. they are all based on stmicroelectronics ultralow leakage process. note: the ultra-low-power stm3 2l and general-purpose stm32f xxxx families are pin-to-pin compatible. the stm8l15xxx devices are pin-to-pin compatible with the stm8l101xx devices. please refer to the stm32f and stm8l documentation for more information on these devices. 2.2.1 performance all families incorporate highly energy-efficien t cores with both harvar d architecture and pipelined execution: advanced stm8 core fo r stm8l families and arm cortex?-m3 core for stm32l family. in addition specific care for the design architecture has been taken to optimize the ma/dmips and ma/mhz ratios. this allows the ultra-low-power performance to range from 5 up to 33.3 dmips. 2.2.2 shared peripherals stm8l15xxx and stm32l15xxx share identical peripherals which ensure a very easy migration from one family to another: analog peripherals: adc, dac and comparators digital peripherals: rtc and some communication interfaces 2.2.3 common system strategy to offer flexibility and optimize performanc e, the stm8l15xxx and stm32l15xxx families use a common architecture: same power supply range from 1.65 v to 3.6 v architecture optimized to reach ultralow consumption both in low power modes and run mode fast startup strategy from low power modes flexible system clock ultrasafe reset: same reset strategy incl uding power-on reset, power-down reset, brownout reset and programmable voltage detector 2.2.4 features st ultra-low-power continuum al so lies in feature compatibility: more than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm memory density ranging from 4 to 384 kbytes
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 13/140 3 functional overview figure 1. ultra-low-power stm32l15xxd block diagram ext.it winwa t ch d og 12bit ad c jtag &sw 40 a f jtdi j t ck /s wclk j t ms /swdat nj tr s t jtdo nrst v dd33 =1.65v to 3.6v 115 a f us b 2.0 fs device us b _ dp us b_ dm mo s i,mis o, s ck ,n s s ,ws ,c k sra m48k 2x(8x16bit) wku p f max :32mhz v ss scl,sda,smbus,pmbus i2c 2 v d dr e f _ad c * gp dma 7 channels timer2 timer3 xtal osc 1-24 mhz xtal 32khz o s c_in o s c_out o s c 32_ out o s c 32_ in ah b p c l k hc lk apbpclk as a f ee p r o m volt. reg. v ddc o r e power b ac k up i nterfac e as a f timer4 busmatrix 5m/5s 64 bit interfac e rtc v2 rc h s i m3 c p u ibus dbus obl ee2 us b s ra m 512 b trace controller etm us ar t1 us art2 spi2 /i2s backup reg 12 8 scl,sda i2c 1 as af rx,tx,cts, rts, us art3 temp sensor v s s r e f _ad c * ahb :f max =32mhz 4 c hannels 4 c hannels 4 c hannels rc msi s tandb y wd g 32k @vdd33 vdd a / vs s a s martc ard as af rx,tx, cts, rts, smartcard as af rx,tx, cts, rts, s martc ard as af nvic spi1 mo s i,mis o , sck ,nss as af if interface @ vdd a pvd bor int @vdd33 aw u tamper system pa[15:0] pb[15:0] pc[15:0] g p io p o r t c p d[15:0] g p io p o r t d pe[15:0] g p io p o r t e px lcd 8x40 segx comx 12bit dac 1 f if i if 12 bit dac 2 dac_out1 as af mp u vref gp comp bor /bgap c o mp x_ inx pu / pd rtc_out pdr pdr timer6 timer7 timer9 timer10 timer11 2 c hann els 1channel 1channel general purpose timers 384 kb p r og ra m 12kb da ta 8kb b oo t lcd booster v lcd =2.5v to 3.6v @vdd33 v lcd ph[2:0] g p io p o r t h rc l s i dua l bank - rw w fclk p f [15:0] g p io p o r t f p g[15:0] g p io p o r t g g p d ma2 5 c h an n els fs mc d (15 :0) clk oen a(25:0) we n wa it n e bar (2:0) lba r bln(1:0) timer5 (32bits) 4 c hannels us art4 rx,tx as af us art5 rx,tx as af mosi,miso,sck ,nss,ws,ck 2x(8x16bit) mck ,s d as a f spi3/i2s sdio d(7:0) cmd ck opamp1 opamp2 mck ,s d as a f opamp3 traceck, traced0, traced1, traced2, traced4 pbus cap. sens supply monitoring @vdda @vdda @vdda @vdda supply monitoring cap. sensing g p io p o r t b g p io p o r t a ms18272v4 apb2: f max = 32 mhz apb1: f max = 32 mhz pll & clock mgmt vinp vinm vout vinp vinm vout vinp vinm vout dac_out2 as af ahb/apb2 ahb/apb1
functional overview STM32L151XD stm32l152xd 14/140 doc id 022027 rev 6 1. legend: af: alternate function adc: analog-to-digital converter bor: brown out reset dma: direct memory access dac: digital-to-analog converter i2c: inter-integrated circuit multimaster interface 3.1 low power modes the ultra-low-power stm32l15xxd supports dynamic voltage scaling to optimize its power consumption in run mode. the voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system?s maximum operating frequency and the external voltage supply. there are three power consumption ranges: range 1 (v dd range limited to 2.0v-3.6v), with the cpu running at up to 32 mhz range 2 (full v dd range), with a maximum cpu frequency of 16 mhz range 3 (full v dd range), with a maximum cpu frequency limited to 4 mhz (generated only with the multispeed intern al rc oscillator clock source) seven low power modes are provided to achieve the best compromise between low power consumption, short startup time and available wakeup sources: sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. sleep mode power consumption at 16 mhz is about 1 ma with all peripherals off. low power run mode this mode is achieved with the multispeed internal (msi) rc oscillator set to the minimum clock (131 khz), execution from sram or flash memory, and internal regulator in low power mode to minimize the regulator's operating current. in low power run mode, the clock frequency and the number of enabled peripherals are both limited. low power sleep mode this mode is achieved by entering sleep mode with the internal voltage regulator in low power mode to minimize the regulator?s operating current. in low power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 khz. when wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on. stop mode with rtc stop mode achieves the lowest power consumption while retaining the ram and register contents and real time clock. all clocks in the v core domain are stopped, the pll, msi rc, hsi rc and hse cr ystal oscillators are disabled. the lse or lsi is still running. the voltage regulator is in the low power mode. the device can be woken up from stop mode by any of the exti line, in 8 s. the exti line source can be one of the 16 external lines. it can be the pvd output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the rtc alarm(s), the usb wakeup, the rtc tamper events, the rtc timestamp event or the rtc wakeup.
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 15/140 stop mode without rtc stop mode achieves the lowest power consumption while retaining the ram and register contents. all clocks are stopped, the pll, msi rc, hsi and lsi rc, lse and hse crystal oscillators are di sabled. the voltage regulator is in th e low power mode. the device can be woken up from stop mode by any of the exti line, in 8 s. the exti line source can be one of the 16 external lines. it can be the pvd output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). it can also be wakened by the usb wakeup. standby mode with rtc standby mode is used to achieve the lowest power consumption and real time clock. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi rc, hsi rc and hse crystal oscillators are also switched off. the lse or lsi is still running. after entering standby mode, the ram and register contents are lost except for registers in the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). the device exits standby mode in 60 s when an external reset (nrst pin), an iwdg reset, a rising edge on one of the three wkup pins, rtc alarm (alarm a or alarm b), rtc tamper event, rtc timestamp event or rtc wakeup event occurs. standby mode without rtc standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi rc, hsi and lsi rc, hse and lse crystal os cillators are also switched off. after entering standby mode, the ram and register contents are lost except for registers in the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). the device exits standby mode in 60 s when an external reset (nrst pin) or a rising edge on one of the three wkup pin occurs. note: the rtc, the iwdg, and the corresponding clock sources are not stopped automatically by entering stop or standby mode.
functional overview STM32L151XD stm32l152xd 16/140 doc id 022027 rev 6 table 3. functionalities depending on the operating power supply range functionalities depending on the operating power supply range operating power supply range dac and adc operation usb dynamic voltage scaling range i/o operation v dd = 1.65 to 1.8 v not functional not functional range 2 or range 3 degraded speed performance v dd = 1.8 to 2.0 v conversion time up to 500 ksps not functional range 2 or range 3 degraded speed performance v dd = 2.0 to 2.4 v conversion time up to 500 ksps functional (1) 1. to be usb compliant from the io voltage standpoint, the minimum v dd is 3.0 v. range 1, range 2 or range 3 full speed operation v dd = 2.4 to 3.6 v conversion time up to 1 msps functional (1) range 1, range 2 or range 3 full speed operation table 4. cpu frequency range depending on dynamic voltage scaling cpu frequency range dynamic voltage scaling range 16 mhz to 32 mhz (1ws) 32 khz to 16 mhz (0ws) range 1 8 mhz to 16 mhz (1ws) 32 khz to 8 mhz (0ws) range 2 2.1mhz to 4.2 mhz (1ws) 32 khz to 2.1 mhz (0ws) range 3
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 17/140 table 5. functionalities depending on the working mode (from run/active down to standby) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability cpu y -- y -- -- -- flash y y y n -- -- ram y y y y y -- backup registers y y y y y y eeprom y -- y y y -- brown-out rest (bor) yyyyyyy dma y y y y -- -- programable voltage detector (pvd) yyyyyyy power on reset (por) yyyyyyy power down rest (pdr) yyyyy y high speed internal (hsi) y y -- -- -- -- high speed external (hse) y y -- -- -- -- low speed internal (lsi) yyyyy -- low speed external (lse) yyyyy -- multi-speed internal (msi) y y y y -- -- inter-connect controler y y y y -- -- rtc y y y y y y y rtc tamper y y y y y y y y auto wakeup (awu) yyyyyyyy lcd y y y y y -- usb y y -- -- -- y -- usart y y y y y (1) -- spi y y y y -- i2c y y y y (1) --
functional overview STM32L151XD stm32l152xd 18/140 doc id 022027 rev 6 3.2 arm ? cortex?-m3 core with mpu the arm cortex?-m3 processor is the industry leading processor for embedded systems. it has been developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. the arm cortex?-m3 32-bit risc processor features exceptional code-efficiency, delivering the high-performance expected from an arm core in the memory size usually associated with 8- and 16-bit devices. the memory protection unit (mpu) improves system re liability by defining the memory attributes (such as read/write access permission s) for different memory regions. it provides up to eight different regions and an optional predefined background region. adc y y -- -- -- -- dac y y y y y -- tempsensor y y y y y -- op amp y y y y y -- comparators y y y y y y -- 16-bit and 32-bit timers y y y y -- -- iwdg y y y y y y y y wwdg y y y y -- -- touch sensing y y -- -- -- -- systic timer y y y y -- gpios y y y y y y 3pins wakeup time to run mode 0 s 0.36 s 3 s 32 s < 8 s 50 s consumption v dd =1.8v to 3.6v (typ) d o w n t o 238 a/mhz (from flash) d o w n t o 55 a/mhz (from flash) down to 11 a down to 4.4 a 0.65 a (no rtc) v dd =1.8v 0.35 a (no rtc) v dd =1.8v 1.5 a (with rtc) v dd =1.8v 1 a (with rtc) v dd =1.8v 0.65a (no rtc) v dd =3.0v 0.35 a (no rtc) v dd =3.0v 1.7 a (with rtc) v dd =3.0v 1.3 a (with rtc) v dd =3.0v 1. the startup on communication line wakes the cpu which was made possible by an exti, this induces a delay before entering run mode. table 5. functionalities depending on the working mode (from run/active down to standby) (continued) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 19/140 owing to its embedded arm core, the stm32l15xxd is compatible with all arm tools and software. nested vectored interrupt controller (nvic) the ultra-low-power stm32l15xxd embeds a nested vectored interrupt controller able to handle up to 56 maskable interrupt channels (not including the 16 interrupt lines of cortex?-m3) and 16 priority levels. closely coupled nvic gives low-latency interrupt processing interrupt entry vector table address passed directly to the core closely coupled nvic core interface allows early processing of interrupts processing of late arriving , higher-priority interrupts support for tail-chaining processor state automatically saved interrupt entry restored on interrupt exit with no instruction overhead this hardware block provides flexible interrupt management features with minimal interrupt latency. 3.3 reset and supply management 3.3.1 power supply schemes v dd = 1.65 to 3.6 v: external power supply for i/os and the internal regulator. provided externally through v dd pins. v ssa , v dda = 1.65 to 3.6 v: external analog power supplies for adc, reset blocks, rcs and pll (minimum voltage to be applied to v dda is 1.8 v when the adc is used). v dda and v ssa must be connected to v dd and v ss , respectively. 3.3.2 power supply supervisor the device has an integrated zeropower power-on reset (por)/power-down reset (pdr) that can be coupled with a brownout reset (bor) circuitry. the device exists in two versions: the version with bor activated at power-on operates between 1.8 v and 3.6 v. the other version without bor operates between 1.65 v and 3.6 v. after the v dd threshold is reached (1.65 v or 1.8 v depending on the bor which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the bor permanently: in this case, the v dd min value becomes 1.65 v (whatever the version, bor active or not, at power-on). when bor is active at power-on, it ensures proper operation starting from 1.8 v whatever the power ramp-up phase before it reaches 1.8 v. when bor is not active at power-up, the power ramp-up should guarantee that 1.65 v is reached on v dd at least 1 ms after it exits the por area.
functional overview STM32L151XD stm32l152xd 20/140 doc id 022027 rev 6 five bor thresholds are available through option bytes, starting from 1.8 v to 3 v. to reduce the power consumption in stop mode, it is possible to automatically switch off the internal reference voltage (v refint ) in stop mode. the device remains in reset mode when v dd is below a specified threshold, v por/pdr or v bor , without the need for any external reset circuit. note: the start-up time at power-on is typically 3.3 ms when bor is active at power-up, the start- up time at power-on can be decreased down to 1 ms typically for devices with bor inactive at power-up. the device features an embedded programmable voltage detector (pvd) that monitors the v dd /v dda power supply and compares it to the v pvd threshold. this pvd offers 7 different levels between 1.85 v and 3.05 v, chosen by software, with a step around 200 mv. an interrupt can be generated when v dd /v dda drops below the v pvd threshold and/or when v dd /v dda is higher than the v pvd threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software. 3.3.3 voltage regulator the regulator has three operation modes: main (mr), low power (lpr) and power down. mr is used in run mode (nominal regulation) lpr is used in the low power run, low power sleep and stop modes power down is used in standby mode. the regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and ram are lost except for the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). 3.3.4 boot modes at startup, boot pins are used to select one of three boot options: boot from flash memory boot from system memory boot from embedded ram the boot from flash usually boots at the beginni ng of the flash (bank 1). an additional boot mechanism is available through user option byte, to allow booting from bank 2 when bank 2 contains valid code. this dual boot capability can be used to easily implement a secure field software update mechanism. the boot loader is located in system memory. it is used to reprogram the flash memory by using usart1, usart2 or usb. see stm32? microcontroller system memory boot mode an2606 for details.
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 21/140 3.4 clock management the clock controller distributes the clocks coming from different oscilla tors to the core and the peripherals. it also manages clock gating for low power modes and ensures clock robustness. it features: clock prescaler : to get the best trade-off between speed and current consumption, the clock frequency to the cpu and peripherals can be adjusted by a programmable prescaler. safe clock switching : clock sources can be changed safely on the fly in run mode through a configuration register. clock management : to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. system clock source : three different clock sources can be used to drive the master clock sysclk: ? 1-24 mhz high-speed external crystal (hse), that can supply a pll ? 16 mhz high-speed internal rc oscillator (hsi), trimmabl e by software, that can supply a pll ? multispeed internal rc oscillator (msi), tr immable by software, able to generate 7 frequencies (65 khz, 131 khz, 262 khz, 524 khz, 1.05 mhz, 2.1 mhz, 4.2 mhz). when a 32.768 khz clock source is ava ilable in the system (lse), the msi frequency can be trimmed by software down to a 0.5% accuracy. auxiliary clock source : two ultra-low-power clock sources that can be used to drive the lcd controller and the real-time clock: ? 32.768 khz low-speed external crystal (lse) ? 37 khz low-speed internal rc (lsi), also used to drive the independent watchdog. the lsi clock can be measur ed using the high-s peed internal rc oscillator for greater precision. rtc and lcd clock sources: the lsi, lse or hse sources can be chosen to clock the rtc and the lcd, whatever the system clock. usb clock source: the embedded pll has a dedicated 48 mhz clock output to supply the usb interface. startup clock : after reset, the microcontroller restarts by default with an internal 2 mhz clock (msi). the prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. clock security system (css): this feature can be enabled by software. if a hse clock failure occurs, the master clock is automatically switched to hsi and a software interrupt is generated if enabled. clock-out capability (mco: microcontroller clock output): it outputs one of the internal clocks for external use by the application. several prescalers allow the configurati on of the ahb frequenc y, each apb (apb1 and apb2) domains. the maximum frequ ency of the ahb and the apb domains is 32 mhz. see figure 2 for details on the clock tree.
functional overview STM32L151XD stm32l152xd 22/140 doc id 022027 rev 6 figure 2. clock tree 1. for the usb function to be available, both hse and pll must be enabled, with the cpu running at either 24 mhz or 32 mhz. ms18583v1 lsi rc lse osc hsi rc hse osc @v33 @v ddcore @v33 level shifters level shifters rtc pll x 3,4,6,8,12 @v33 level shifters lse tempo 1 mhz clock detector @v33 ls watchdog ck_pllin source control clock watchdog enable rtc enable ck_hsi ck_hse hse present or not lsi tempo ck_pll ahb prescaler / 1,2,..512 apb2 / 1,2,4,8,16 apb1 / 1,2,4,8,16 ck_usb = vco / 2 (vco must be at 96 mhz) / 8 ck_timsys ck_cpu ck_fclk ck_pwr ck_usb48 ck_timtgo ck_apb1 ck_apb2 usben and (not deepsleep) timer9en and (not deepsleep) apb1 periphen and (not deepsleep) apb2 periphen and (not deepsleep) not (sleep or deepsleep) not (sleep or deepsleep not deepsleep not deepsleep standby supplied voltage domain system clock mco if (apb1 presc = 1) x1 else x2 16,24,32,48 ck_lse ck_lcd / 2, 3, 4 1 mhz @v ddcore @v ddcore @v ddcore / 1,2,4,8,16 lcd enable msi rc @v33 @v ddcore level shifters ck_msi ck_lsi ck_adc adc enable ls ls ls ls ls ls / 2,4,8,16 prescaler prescaler
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 23/140 3.5 low power real-time clock and backup registers the real-time clock (rtc) is an independent bcd timer/counter. dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in bcd (binary-coded decimal) format. correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. the rtc provides two programmable alarms and programmable periodic interrupts with wakeup from stop and standby modes. the programmable wakeup time ranges from 120 s to 36 hours. the rtc can be calibrated with an external 512 hz output, and a digital compensation circuit helps reduce drift due to crystal deviation. the rtc can also be automatically corrected with a 50/60hz stable powerline. the rtc calendar can be updated on the fly down to sub second precision, which enables network system synchronisation. a time stamp can record an external event occurrence, and generates an interrupt. there are thirty-two 32-bit backup registers provided to store 128 bytes of user application data. they are cleared in case of tamper detection. three pins can be used to detect tamper even ts. a change on one of these pins can reset backup register and generate an interrupt. to prevent false tamper event, like esd event, these three tamper inputs can be digitally filtered. 3.6 gpios (general-purpose inputs/outputs) each of the gpio pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated afio registers. all gpios are high current capable. the alternate function configuration of i/os can be locked if needed following a specific sequence in order to avoid spurious writing to the i/o registers. the i/o controller is connected to the ahb with a toggling speed of up to 16 mhz. external interrupt/event controller (exti) the external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains the status of the interrupt requests. the exti can detect an external line with a pulse width shorter than the internal apb2 cloc k period. up to 115 gp ios can be connected to the 16 external interrupt lines. the 8 other lines are connected to rtc, pvd, usb, comparator events or capacitive sensing acquisition.
functional overview STM32L151XD stm32l152xd 24/140 doc id 022027 rev 6 3.7 memories the stm32l15xxd devices have the following features: 48 kbytes of embedded ram accessed (read/write) at cpu clock speed with 0 wait states. with the enhanced bus matrix, operating the ram does not lead to any performance penalty during accesses to the system bus (ahb and apb buses). the non-volatile memory is divided into three arrays: ? 384 kbytes of embedded flash program memory ? 12 kbytes of data eeprom ? options bytes flash program and data eeprom are divided in to two banks, this enables writing in one bank while running code or reading data in the other bank. the options bytes are used to write-protect the memory (with 4 kb granularity) and/or readout-protect the whole memory with the following options: ? level 0: no readout protection ? level 1: memory readout protection, the flash memory cannot be read from or written to if either debug features are connected or boot in ram is selected ? level 2: chip readout protection, debug features (cortex-m3 jtag and serial wire) and boot in ram selection disabled (jtag fuse) the whole non-volatile memory embeds the error correction code (ecc) feature. 3.8 fsmc (flexible stat ic memory controller) the fsmc supports the following modes: sram, psram, nor/onenand flash. functionality overview: up to 26 bit address bus up to 16-bit data bus write fifo burst mode code execution from external memory four chip select signals up to 32 mhz external access 3.9 dma (direct memory access) the flexible 12-channel, general-purpose dma is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dma controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. each channel is connected to dedicated hardware dma requests, with software trigger support for each channel. configuration is done by software and transfer sizes between source and destination are independent. the dma can be used with the main peripherals: spi, i 2 c, usart, sdio, general-purpose timers, dac and adc.
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 25/140 3.10 lcd (liquid crystal display) the lcd drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels. internal step-up converter to guarantee functionality and contrast control irrespective of v dd . this converter can be deactivated, in which case the v lcd pin is used to provide the voltage to the lcd supports static, 1/2, 1/3, 1/4 and 1/8 duty supports static, 1/2, 1/3 and 1/4 bias phase inversion to reduce power consumption and emi up to 8 pixels can be programmed to blink unneeded segments and common pins can be used as general i/o pins lcd ram can be updated at any time owing to a double-buffer the lcd controller can operate in stop mode 3.11 adc (analog-to-digital converter) a 12-bit analog-to-digital converters is embedded into stm32l15xxd devices with up to 40 external channels, performing conversions in single-shot or scan mode. in scan mode, automatic conversion is performed on a selected group of analog inputs with up to 29 external channel in a group. the adc can be served by the dma controller. an analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. the events generated by the general-purpose timers (timx) can be internally connected to the adc start triggers, to allow the application to synchronize a/d conversions and timers. an injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task. the adc includes a specific low power mode. the converter is able to operate at maximum speed even if the cpu is operating at a very low frequency and has an auto-shutdown function. the adc?s runtime and analog front-end current consumption are thus minimized whatever the mcu operating mode. 3.11.1 temperature sensor the temperature sensor (t sense ) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connected to the adc_in16 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
functional overview STM32L151XD stm32l152xd 26/140 doc id 022027 rev 6 to improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by st. the temperature sensor factory calibration data are stored by st in the system memory area, accessible in read-only mode. 3.11.2 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally connected to the adc_in17 input channel. it enables accurate monitoring of the v dd value (when no external voltage, vref+, is available for adc). the precise voltage of v refint is individually measured for each part by st during production test and stored in the system memory area. it is accessible in read- only mode. 3.12 dac (digital-to-analog converter) the two 12-bit buffered dac channels can be used to convert two digital signals into two analog voltage signal outputs. the chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. this dual digital interface supports the following features: two dac converters: one for each output channel up to 10-bit output left or right data alignment in 12-bit mode synchronized update capability noise-wave generation triangular-wave generation dual dac channels, independent or simultaneous conversions dma capability for each channel (inc luding the underrun interrupt) external triggers for conversion input reference voltage v ref+ table 6. temperature sensor calibration values calibration value name description memory address tsense_cal1 ts adc raw data acquired at temperature of 30 c, v dda = 3 v 0x1ff8 00fa - 0x1ff8 00fb tsense_cal2 ts adc raw data acquired at temperature of 110 c v dda = 3 v 0x1ff8 00fe - 0x1ff8 00ff table 7. internal voltage reference measured values calibration value name description memory address vrefint_cal raw data acquired at temperature of 30 c v dda = 3 v 0x1ff8 00f8 - 0x1ff8 00f9
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 27/140 eight dac trigger inputs are used in the stm32l15xxd. the dac channels are triggered through the timer update outputs that are also connected to different dma channels. 3.13 operational amplifier the stm32l15xxd embeds three operational amplifiers with external or internal follower routing capability (or even am plifier and filter capability with external components). when one operational amplifier is selected, one external adc channel is used to enable output measurement. the operational amplifiers feature: low input bias current low offset voltage low power mode rail-to-rail input 3.14 ultra-low-power comparators and reference voltage the stm32l15xxd embeds two comparators sharing the same current bias and reference voltage. the reference voltage can be internal or external (coming from an i/o). one comparator with fixed threshold one comparator with rail-to-rail inputs, fast or slow mode. the threshold can be one of the following: ? dac output ? external i/o ? internal reference voltage (v refint ) or a submultiple (1/4, 1/2, 3/4) both comparators can wake up from stop mode, and be combined into a window comparator. the internal reference voltage is available externally via a low power / low current output buffer (driving current ca pability of 1 a typical). 3.15 system configuration cont roller and routing interface the system configuration controller provides the capability to remap some alternate functions on different i/o ports. the highly flexible routing interface allows the application firmware to control the routing of different i/os to the tim2, tim3 and tim4 timer input captures. it also controls the routing of internal analog signals to adc1, comp1 and comp2 and the internal reference voltage v refint . 3.16 touch sensing the stm32l15xxd devices provide a simple solution for adding capacitive sensing functionality to any application. these devices offer up to 34 capacitive sensing channels distributed over 11 analog i/o groups. both software and timer capacitive sensing acquisition modes are supported.
functional overview STM32L151XD stm32l152xd 28/140 doc id 022027 rev 6 capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). the capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. it consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. the capacitive sensing acquisition only requires few external components to operate. reliable touch sensing functionality can be qu ickly and easily implemented using the free stm32l1xx stmtouch touch sensing firmware library. 3.17 timers and watchdogs the ultra-low-power stm32l15xxd devices include seven general-purpose timers, two basic timers, and two watchdog timers. ta bl e 8 compares the features of the general-purpose and basic timers. 3.17.1 general-purpose timers (tim2, tim3, tim4, tim5, tim9, tim10 and tim11) there are seven synchronizable general-purpose timers embedded in the stm32l15xxd devices (see ta bl e 8 for differences). tim2, tim3, tim4, tim5 tim2, tim3, tim4 are based on 16-bit auto-reload up/down counter. tim5 is based on a 32- bit auto-reload up/down counter. they include a 16-bit prescaler. they feature four independent channels each for input capture/output compare, pwm or one-pulse mode output. this gives up to 16 input captures/ output compares/pwms on the largest packages. tim2, tim3, tim4, tim5 general-purpose timers can work together or with the tim10, tim11 and tim9 general-purpose timers via th e timer link feature for synchronization or event chaining. their counter can be frozen in debug mode. any of the general-purpose timers can be used to generate pwm outputs. table 8. timer feature comparison timer counter resolution counter type prescaler factor dma request generation capture/compare channels complementary outputs tim2, tim3, tim4 16-bit up, down, up/down any integer between 1 and 65536 ye s 4 n o tim5 32-bit up, down, up/down any integer between 1 and 65536 ye s 4 n o tim9 16-bit up, down, up/down any integer between 1 and 65536 no 2 no tim10, tim11 16-bit up any integer between 1 and 65536 no 1 no tim6, tim7 16-bit up any integer between 1 and 65536 ye s 0 n o
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 29/140 tim2, tim3, tim4, tim5 all have independent dma request generation. these timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. tim10, tim11 and tim9 tim10 and tim11 are based on a 16-bit auto-reload upcounter. tim9 is based on a 16-bit auto-reload up/down counter. they include a 16-bit prescaler. tim10 and tim11 feature one independent channel, whereas tim9 has two independent channels for input capture/output compare, pwm or one-pulse mode output. they can be synchronized with the tim2, tim3, tim4, tim5 full-featured general-purpose timers. they can also be used as simple time bases and be clocked by the lse clock source (32.768 khz) to provide time bases independent from the main cpu clock. 3.17.2 basic timers (tim6 and tim7) these timers are mainly used for dac trigger generation. they can also be used as generic 16-bit time bases. 3.17.3 systick timer this timer is dedicated to the os, but could also be used as a standard downcounter. it is based on a 24-bit downcounter with autorel oad capability and a programmable clock source. it features a maskable system interrupt generation when the counter reaches 0. 3.17.4 independent watchdog (iwdg) the independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. it is clocked from an independent 37 khz internal rc and, as it operates independently of the main clock, it can operate in stop and standby modes. it can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. it is hardware- or software-configurable through the option bytes. the counter can be frozen in debug mode. 3.17.5 window watchdog (wwdg) the window watchdog is based on a 7-bit downc ounter that can be set as free-running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the main clock. it has an early warning interrup t capability and the counter can be frozen in debug mode. 3.18 communication interfaces 3.18.1 i2c bus up to two i2c bus interfaces can operate in multimaster and slave modes. they can support standard and fast modes. they support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. a hardware crc generation/verification is embedded. they can be served by dma and they support sm bus 2.0/pm bus.
functional overview STM32L151XD stm32l152xd 30/140 doc id 022027 rev 6 3.18.2 universal synchronous/asynch ronous receiver tr ansmitter (usart) the three usart and two uart interfaces are able to communicate at speeds of up to 4 mbit/s. they support irda sir endec, are iso 7816 compliant and have lin master/slave capability. the three usarts provide hardware management of the cts and rts signals. all usart/uart interfaces can be served by the dma controller. 3.18.3 serial peripheral interface (spi) up to three spis are able to communicate at up to 16 mbits/s in slave and master modes in full-duplex and half-duplex communication modes. the 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. the hardware crc generation/verification supports basic sd card/mmc modes. the spis can be served by the dma controller. 3.18.4 inter-integrated sound (i 2 s) two standard i2s interfaces (multiplexed with spi2 and spi3) are available. they can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. audio sampling frequencies from 8 khz up to 192 khz are supported. when either or both of the i2s interfaces is/are configured in master mode, the master clock can be output to the external dac/codec at 256 times the sampling frequency. the i2ss can be served by the dma controller. 3.18.5 sdio an sd/sdio/mmc host interface is availabl e, that supports mu ltimediacard system specification version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. the interface allows data transfer at up to 24 mhz in 8-bit mode, and is compliant with the sd memory card specification version 2.0. the sdio card specification version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. the current version supports only one sd/sdio/mmc4.2 card at any one time and a stack of mmc4.1 or previous. in addition to sd/sdio/mmc, this interface is fully compliant with the ce-ata digital protocol rev1.1. 3.18.6 universal serial bus (usb) the stm32l15xxd embeds a usb device peripheral compatible with the usb full-speed 12 mbit/s. the usb interface implements a full-speed (12 mbit/s) function interface. it has software-configurable endpoint setting and supports suspend/resume. the dedicated
STM32L151XD stm32l152xd functional overview doc id 022027 rev 6 31/140 48 mhz clock is generated from the internal main pll (the clock source must use a hse crystal oscillator). 3.19 crc (cyclic redundancy check) calculation unit the crc (cyclic redundancy check) calculation unit is used to get a crc code from a 32-bit data word and a fixed generator polynomial. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc ca lculation unit helps co mpute a signature of the software during runtime, to be compared with a reference signature generated at link- time and stored at a given memory location. 3.20 development support serial wire jtag debug port (swj-dp) the arm swj-dp interface is embedded, and is a combined jtag and serial wire debug port that enables either a serial wire debug or a jtag probe to be connected to the target. the jtag jtms and jtck pins are shared with swdat and swclk, respectively, and a specific sequence on the jtms pin is used to switch between jtag-dp and sw-dp. the jtag port can be permanently disabled with a jtag fuse. embedded trace macrocell? the arm ? embedded trace macrocell pr ovides a greater visibility of the instruction and data flow inside the cpu core by streaming compressed data at a very high rate from the stm32l15xxd through a small number of etm pins to an external hardware trace port analyzer (tpa) device. the tpa is connected to a host computer using usb, ethernet, or any other high-speed channel. real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. tpa hardware is commercially available from common development tool vendors. it operates with third party debugger software tools.
pin descriptions STM32L151XD stm32l152xd 32/140 doc id 022027 rev 6 4 pin descriptions figure 3. stm32l15xzd lqfp144 pinout ms18581v2 v dd_3 v ss_3 pe1 pe0 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pg15 v dd_11 v ss_11 pg14 pg13 pg12 pg11 pg10 pg9 pd7 pd6 v dd_10 v ss_10 pd5 pd4 pd3 pd2 pd1 pd0 pc12 pc11 pc10 pa 15 pa 14 pe2 v dd_2 pe3 v ss_2 pe4 pe5 pa 13 pe6-wkup3 pa 12 pa 11 pc13-wkup2 pa 10 pc14-osc32_in pa 9 pc15-osc32_out pa 8 pf0 pc9 pf1 pc8 pf2 pc7 pf3 pc6 pf4 v dd_9 pf5 v ss_9 v ss_5 pg8 v dd_5 pg7 pf6 pg6 pf7 pg5 pf8 pg4 pf9 pg3 pf10 pg2 osc_in pd15 osc_out pd14 nrst v dd_8 pc0 v ss_8 pc1 pd13 pc2 pd12 pc3 pd11 v ssa pd10 v ref- pd9 v ref+ pd8 v dda pb15 pa 0 -w kup1 pb14 pa 1 pb13 pa 2 pb12 pa 3 v ss_4 v dd_4 pa 4 pa 5 pa 6 pa 7 pc4 pc5 pb0 pb1 pb2 pf11 pf12 vss_6 v dd_6 pf13 pf14 pf15 pg0 pg1 pe7 pe8 pe9 v ss_7 v dd_7 pe10 pe11 pe12 pe13 pe14 pe15 pb10 pb11 v ss_1 v dd_1 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 109 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72 lqfp144 120 119 118 117 116 115 114 113 112 111 110 61 62 63 64 65 66 67 68 69 70 71 26 27 28 29 30 31 32 33 34 35 36 83 82 81 80 79 78 77 76 75 74 73 v lcd ph2
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 33/140 figure 4. stm32l15xqd ufbga132 ballout 1. this figure shows the package top view. ms31072v1 a b e d c f g h pe3 pc15- osc32 _out pc14- osc32 _in pe4 pc0 pe1 pe5 pe2 pe6- wkup3 vlcd vss_5 vdd_5 nrst pb8 pb9 pe0 vss_6 pf4 pf6 vdd_6 boot0 pb7 vss_3 pd7 pb6 pb5 pd5 pd6 pb4 pd4 pg14 pg12 pg13 pf0        pc13- wkup2 ph0 osc_in ph1 osc_ out vdd_3 vdd_9 pf2 pf1 vss_9 j vssa pc1 pc2 pa4 pa7 pf9 pf12 pb3 pd3 pd2 vss_10 vdd_10 pa15 pd1 pg10 pg1 pg0 pa14 pc12 pc11 pd15 pa13 pc10 pa12 pa11 ph2 vdd_2 pd14 pc9 pc6 pa10 vdd_1 pd13 vss_1 pa8 pc7 vss_2 pd0 pg2 pg3 pg5 pg9 pa9 pc8 pg4 pf14 pf15 pd12 pd11 pd10 vref+ pc3 pa0- wkup1 pa2 pa3 pa5 pa6 pc5 pf11 pb2 pf13 pe8 opamp3 _vinm pc4 vdda pa1 opamp1 _vinm opamp2 _vinm pb0 pb1 pe7 pd9 pe10 pd8 pe12 pb10 pb14 pb11 pb13 pb12 pb15 pe9 pe11 pe13 pe14 pe15 k l m pf3 pf5 pf7 pf8     
pin descriptions STM32L151XD stm32l152xd 34/140 doc id 022027 rev 6 figure 5. stm32l15xvd lqfp100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 vdd_2 vss_2 ph2 pa 1 3 pa 1 2 pa 1 1 pa 1 0 pa 9 pa 8 pc9 pc8 pc7 pc6 pd15 pd14 pd13 pd12 pd11 pd10 pd9 pd8 pb15 pb14 pb13 pb12 pa 3 vss_4 vdd_4 pa 4 pa 5 pa 6 pa 7 pc4 pc5 pb0 pb1 pb2 pe7 pe8 pe9 pe10 pe11 pe12 pe13 pe14 pe15 pb10 pb11 vss_1 vdd_1 vdd_3 vss_3 pe1 pe0 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pd7 pd6 pd5 pd4 pd3 pd2 pd1 pd0 pc12 pc11 pc10 pa15 pa14 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 pe2 pe3 pe4 pe5 pe6-wkup3 v lcd pc13-wkup2 pc14-osc32_in pc15-osc32_out vss_5 vdd_5 ph0-osc_in ph1-osc_out nrst pc0 pc1 pc2 pc3 vssa vref- vref+ vdda pa 0 - w k u p1 pa 1 pa 2 ai15692c lqfp100
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 35/140 figure 6. stm32l15xrd lqfp64 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 29 30 31 32 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 v lcd pc13-wkup2 pc14-osc32_in pc15-osc32_out ph0 -osc_in ph1- osc_out nrst pc0 pc1 pc2 pc3 vssa vdda pa 0 - w k u p1 pa 1 pa 2 vdd_3 vss_3 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pd2 pc12 pc11 pc10 pa 1 5 pa 1 4 vdd_2 vss_ 2 pa 1 3 pa 1 2 pa 1 1 pa 1 0 pa 9 pa 8 pc9 pc8 pc7 pc6 pb15 pb14 pb13 pb12 pa 3 vss_4 vdd_4 pa 4 pa 5 pa 6 pa 7 pc4 pc5 pb0 pb1 pb2 pb10 pb11 vss_1 vdd_1 lqfp64 ai15693c
pin descriptions STM32L151XD stm32l152xd 36/140 doc id 022027 rev 6 figure 7. stm32l15xrd wlcsp64 ballout 1. this figure shows the package top view. ms31070v1 a b e d c f g h vdd_2 pc6 pc9 vss_2 vdd_1 pc10 pa12 pa14 pa9 pc7 pb14 pb12 vss_1 pd2 pc11 pa15 pc8 pb11 pb10 pb2 pb3 pb4 pa10 pa7 pb0 pb5 pb6 pb7 pc5 boot0 pb9 vss_3 pc15- osc32_out vdd_3 pc14- osc32_in vlcd vdd_4 pc4 ph1- osc_out vssa nrst pa3 pa4 pc13- wkup2 pc1 pa2 pc3 pc2 pa1 pa0- wkup1 ph0- osc_in pc0 vdda        pa11 pb15 pb13 pc12 pa6 pb1 pa8 pa13 pb8 pa5 vss_4
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 37/140 table 9. stm32l15xxd pin definitions pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64 1 b2 1 - - pe2 i/o ft pe2 tim3_etr/lcd_seg38/fsmc_a23/traceclk 2 a1 2 - - pe3 i/o ft pe3 tim3_ch1/lcd_seg39/fsmc_a19/traced0 3 b1 3 - - pe4 i/o ft pe4 tim3_ch2/fsmc_a20/traced1 4 c2 4 - - pe5 i/o ft pe5 tim9_ch1/fsmc_a21/traced2 5d25 -- pe6- wkup3 i/o ft pe6 wkup3/rtc_tamp3/tim9_ch2/traced3 6e261c6 v lcd (4) sv lcd 7 c1 7 2 c8 pc13-wkup2 i/o ft pc13 wkup2/rtc_tamp1/rtc_ts/rtc_out 8d183b8 pc14- osc32_in (5) i/o pc14 osc32_in 9e194b7 pc15- osc32_out i/o pc15 osc32_out 10 d6 - - - pf0 i/o ft pf0 fsmc_a0 11 d5 - - - pf1 i/o ft pf1 fsmc_a1 12 d4 - - - pf2 i/o ft pf2 fsmc_a2 13 e4 - - - pf3 i/o ft pf3 fsmc_a3 14 f3 - - - pf4 i/o ft pf4 fsmc_a4 15 f4 - - - pf5 i/o ft pf5 fsmc_a5 16 f2 10 - - v ss_5 sv ss_5 17 g2 11 - - v dd_5 sv dd_5 18 g3 - - - pf6 i/o ft pf6 tim5_ch1/tim5_etr/adc_in27 19 g4 - - - pf7 i/o ft pf7 tim5_ch2/adc_in28/comp1_inp 20 h4 - - - pf8 i/o ft pf8 tim5_ch3/adc_in29/comp1_inp 21 j6 - - - pf9 i/o ft pf9 tim5_ch4/adc_in30/comp1_inp 22 - - - - pf10 i/o ft pf10 adc_in30/comp1_inp 23 f1 12 5 d8 ph0-osc_in (6) i ph0 osc_in 24 g1 13 6 d7 ph1- osc_out (6) o ph1 osc_out 25 h2 14 7 c7 nrst i/o nrst 26 h1 15 8 e8 pc0 i/o ft pc0 lcd_seg18/adc_in10/comp1_inp 27 j2 16 9 f8 pc1 i/o ft pc1 lcd_seg19/adc_in11/comp1_inp /opamp3_vinp 28 - 17 10 d6 pc2 i/o ft pc2 lcd_seg20/adc_in12/comp1_inp /opamp3_vinm - j3 - - - pc2 i/o ft pc2 lcd_seg20/adc_in12/comp1_inp - k1 - - - opamp3_vinm i opamp3 _vinm
pin descriptions STM32L151XD stm32l152xd 38/140 doc id 022027 rev 6 29 k2 18 11 f7 pc3 i/o pc3 lcd_seg21/adc_in13/comp1_inp /opamp3_vout 30 j1 19 12 e7 v ssa sv ssa 31 - 20 - - v ref- sv ref- 32 l1 21 - - v ref+ sv ref+ 33 m1 22 13 g8 v dda sv dda 34 l2 23 14 f6 pa0-wkup1 i/o ft pa0 wkup1/rtc_tamp2/tim2_ch1_etr/tim5_ch1/ usart2_cts/adc_in0/comp1_inp 35 m2 24 15 e6 pa1 i/o ft pa1 tim2_ch2/tim5_ch2/ usart2_rts/lcd_seg0/ adc_in1/comp1_inp/opamp1_vinp 36 - 25 16 h8 pa2 i/o ft pa2 tim2_ch3/tim5_ch3/tim9_ch1/usart2_tx/ lcd_seg1/adc_in2/ co mp1_inp/opamp1_vinm - k 3 - - - pa 2 i / o f t pa 2 tim2_ch3/tim5_ch3/tim9_ch1/usart2_tx/ lcd_seg1/adc_in2/comp1_inp - m3 - - - opamp1_vinm i opamp1_ vinm 37 l3 26 17 g7 pa3 i/o pa3 tim2_ch4/tim5_ch4/tim9_ch2/usart2_rx/ lcd_seg2/ adc_in3/comp1_inp/opamp1_vout 38 - 27 18 f5 v ss_4 sv ss_4 39 - 28 19 g6 v dd_4 sv dd_4 40 j4 29 20 h7 pa4 i/o pa4 spi1_nss/spi3_nss/i2 s3_ws/usart2_ck/ adc_in4/dac_out1/comp1_inp 41 k4 30 21 e5 pa5 i/o pa5 tim2_ch1_etr/spi1_sc k/adc_in5/dac_out2/ comp1_inp 42 l4 31 22 g5 pa6 i/o ft pa6 tim3_ch1/tim10_ch1/s pi1_miso/lcd_seg3/ adc_in6/comp1_inp/opamp2_vinp 43 - 32 23 g4 pa7 i/o ft pa7 tim3_ch2/tim11_ch1/ spi1_mosi/lcd_seg4/ adc_in7/comp1_inp/opamp2_vinm - j 5 - - - pa 7 i / o f t pa 7 tim3_ch2/tim11_ch1/ spi1_mosi/lcd_seg4/ adc_in7/comp1_inp - m4 - - - opamp2_vinm i opamp2_vi nm 44 k5 33 24 h6 pc4 i/o ft pc4 lcd_seg22/adc_in14/comp1_inp 45 l5 34 25 h5 pc5 i/o ft pc5 lcd_seg23/adc_in15/comp1_inp 46 m5 35 26 h4 pb0 i/o pb0 tim3_ch3/lcd_seg5/adc_in8/comp1_inp/ vref_out/ opamp2_vout 47 m6 36 27 f4 pb1 i/o ft pb1 tim3_ch4/lcd_seg6/adc_in9/comp1_inp/ vref_out - - 37 28 h3 pb2 i/o ft pb2/boot1 comp1_inp 48 l6 - - pb2 i/o ft pb2/boot1 adc_in0b/comp1_inp table 9. stm32l15xxd pin definitions (continued) pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 39/140 49 k6 - - - pf11 i/o ft pf11 adc_in1b/comp1_inp 50 j7 - - - pf12 i/o ft pf12 adc_in2b/comp1_inp/fsmc_a6 51 e3 - - - v ss_6 sv ss_6 52 h3 - - - v dd_6 sv dd_6 53 k7 - - - pf13 i/o ft pf13 adc_in3b/comp1_inp/fsmc_a7 54 j8 - - - pf14 i/o ft pf14 adc_in6b/comp1_inp/fsmc_a8 55 j9 - - - pf15 i/o ft pf15 adc_in7b/comp1_inp/fsmc_a9 56 h9 - - - pg0 i/o ft pg0 adc_in8b/comp1_inp/fsmc_a10 57 g9 - - - pg1 i/o ft pg1 adc_in9b/comp1_inp/fsmc_a11 58 m7 38 - - pe7 i/o pe7 fsmc_d4/adc_in22/comp1_inp 59 l7 39 - - pe8 i/o pe8 fsmc_d5/adc_in23/comp1_inp 60 m8 - - - pe9 i/o pe9 tim2_ch1_etr/fsmc_d6/ adc_in24/comp1_inp 61 - - - - v ss_7 sv ss_7 62 - - - - v dd_7 sv dd_7 63 l8 41 - - pe10 i/o pe10 tim2_ch2/ fsmc_d7/adc_in25/comp1_inp 64 m9 42 - - pe11 i/o ft pe11 tim2_ch3/fsmc_d8 65 l9 43 - - pe12 i/o ft pe12 tim2_ch4/spi1_nss/fsmc_d9 66 m10 44 - - pe13 i/o ft pe13 spi1_sck/fsmc_d10 67 m11 45 - - pe14 i/o ft pe14 spi1_miso/fsmc_d11 68 m12 46 - - pe15 i/o ft pe15 spi1_mosi/fsmc_d12 69 l10 47 29 g3 pb10 i/o ft pb10 tim2_ ch3/i2c2_scl/usart3_tx/lcd_seg10 70 l11 48 30 f3 pb11 i/o ft pb11 tim2_ch4/i 2c2_sda/ usart3_rx/lcd_seg11 71 f12 49 31 h2 v ss_1 sv ss_1 72 g12 50 32 h1 v dd_1 sv dd_1 73 l12 51 33 g2 pb12 i/o ft pb12 tim10_ch1/i2c2_smba /spi2_nss/i2s2_ws/ usart3_ck/ lcd_seg12/adc_in18/comp1_inp 74 k12 52 34 g1 pb13 i/o ft pb13 tim9_ch1/spi2_sck/ i2 s2_ck/ usart3_cts/ lcd_seg13/adc_in19/comp1_inp 75 k11 53 35 f2 pb14 i/o ft pb14 tim9_ch2/spi2_miso/ usart3_rts/lcd_seg14/ adc_in20/comp1_inp 76 k10 54 36 f1 pb15 i/o ft pb15 tim11_ch1/spi2_mosi /i2s2_sd/l cd_seg15/ adc_in21/comp1_inp/rtc_refin 77 k9 55 - - pd8 i/o ft pd8 usart3_tx/lcd_seg28/fsmc_d13 78 k8 56 - - pd9 i/o ft pd9 usart3_rx/lcd_seg29/fsmc_d14 79 j12 57 - - pd10 i/o ft pd10 usart3_ck/lcd_seg30/fsmc_d15 80 j11 58 - - pd11 i/o ft pd11 usart3_cts/lcd_seg31/fsmc_a16 81 j10 59 - - pd12 i/o ft pd12 tim4_ch1 / usart3_rts/lcd_seg32/fsmc_a17 table 9. stm32l15xxd pin definitions (continued) pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64
pin descriptions STM32L151XD stm32l152xd 40/140 doc id 022027 rev 6 82 h12 60 - - pd13 i/o ft pd13 tim4_ch2/lcd_seg33/fsmc_a18 83 - - - - v ss_8 sv ss_8 84 - - - - v dd_8 sv dd_8 85 h11 61 - - pd14 i/o ft pd14 tim4_ch3/lcd_seg34/fsmc_d0 86 h10 62 - - pd15 i/o ft pd15 tim4_ch4/lcd_seg35/fsmc_d1 87 g10 - - - pg2 i/o ft pg2 fsmc_a12/adc_in10b/comp1_inp 88 f9 - - - pg3 i/o ft pg3 fsmc_a13/adc_in11b/comp1_inp 89 f10 - - - pg4 i/o ft pg4 fsmc_a14/adc_in12b/comp1_inp 90 e9 - - - pg5 i/o ft pg5 fsmc_a15 91 - - - - pg6 i/o ft pg6 92 - - - - pg7 i/o ft pg7 93 - - - - pg8 i/o ft pg8 94 f6 - - - v ss_9 sv ss_9 95 g6 - - - v dd_9 sv dd_9 96 e12 63 37 e1 pc6 i/o ft pc6 tim3_ch1 /i2s2_mck/lcd_seg24/sdio_d6 97 e11 64 38 e2 pc7 i/o ft pc7 tim3_ch2 /i2s3_mck/lcd_seg25/sdio_d7 98 e10 65 39 e3 pc8 i/o ft pc8 tim3_ch3/lcd_seg26/sdio_d0 99 d12 66 40 d1 pc9 i/o ft pc9 tim3_ch4/lcd_seg27/sdio_d1 100 d11 67 41 e4 pa8 i/o ft pa8 usart1_ck/mco/lcd_com0 101 d10 68 42 d2 pa9 i/o ft pa9 usart1_tx / lcd_com1 102 c12 69 43 d3 pa10 i/o ft pa10 usart1_rx / lcd_com2 103 b12 70 44 c1 pa11 i/o ft pa11 usart1_cts/ usb_dm/spi1_miso 104 a12 71 45 c2 pa12 i/o ft pa12 usart1_rts/usb_dp/spi1_mosi 105 a11 72 46 d4 pa13 i/o ft jtms- swdat 106 c11 73 - - ph2 i/o ft ph2 fsmc_a22 107 f11 74 47 b1 v ss_2 sv ss_2 108 g11 75 48 a1 v dd_2 sv dd_2 109 a10 76 49 b2 pa14 i/o ft jtck- swclk 110 a9 77 50 c3 pa15 i/o ft jtdi tim2_ch1_etr/ spi1_nss/spi3_nss/ i2s3_ws/lcd_seg17 111 b11 78 51 a2 pc10 i/o ft pc10 spi3_sck/i2s3_ck/usart3_tx/ uart4_tx/ lcd_seg28/lcd_seg40/lcd_com4/sdio_d2 112 c10 79 52 b3 pc11 i/o ft pc11 spi3_miso/usart3_rx/uart4_rx/ lcd_seg29/lcd_seg41/lcd_com5/sdio_d3 113 b10 80 53 c4 pc12 i/o ft pc12 spi3_mosi/i2s3_sd/usa rt3_ck/ uart5_tx/ lcd_seg30/ lcd_seg42/lcd_com6/sdio_ck table 9. stm32l15xxd pin definitions (continued) pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 41/140 114 c9 81 - - pd0 i/o ft pd0 tim9_ch1/spi2_nss/i2s2_ws/ fsmc_d2 115 b9 82 - - pd1 i/o ft pd1 spi 2_sck/i2s2_ck/fsmc_d3 116 c8 83 54 a3 pd2 i/o ft pd2 tim3_etr/uart5_rx/ lcd_seg31/lcd_seg43/ lcd_com7/sdio_cmd 117 b8 84 - - pd3 i/o ft pd3 spi2_miso/usart2_cts/fsmc_clk 118 b7 85 - - pd4 i/o ft pd4 spi2_mosi/i2s2_sd/usart2_rts/fsmc_noe 119 a6 86 - - pd5 i/o ft pd5 usart2_tx/fsmc_nwe 120 f7 - - - v ss_10 sv ss_10 121 g7 - - - v dd_10 sv dd_10 122 b6 87 - - pd6 i/o ft pd6 usart2_rx/fsmc_nwait 123 a5 88 - - pd7 i/o ft pd7 tim9_ch2/usart2_ck/fsmc_ne1 124 d9 - - - pg9 i/o ft pg9 fsmc_ne2 125 d8 - - - pg10 i/o ft pg10 fsmc_ne3 126 - - - - pg11 i/o ft pg11 127 d7 - - - pg12 i/o ft pg12 fsmc_ne4 128 c7 - - - pg13 i/o ft pg13 fsmc_a24 129 c6 - - - pg14 i/o ft pg14 fsmc_a25 130 - - - - v ss_11 sv ss_11 131 - - - - v dd_11 sv dd_11 132 - - - - pg15 i/o ft pg15 133 a8 89 55 a4 pb3 i/o ft jtdo tim2_ch2/spi1_sck/spi3_sck/ i2s3_ck/ lcd_seg7/comp2_inm 134 a7 90 56 b4 pb4 i/o ft njtrst tim3_ch1/ spi1_miso/spi3_miso/lcd_seg8/ comp2_inp 135 c5 91 57 a5 pb5 i/o ft pb5 tim3_ch2 /i2c1_smba/spi1_mosi/spi3_mosi/ i2s3_sd/lcd_seg 9/comp2_inp 136 b5 92 58 b5 pb6 i/o ft pb6 tim4_ch1 /i2c1_scl/usart1_tx/comp2_inp 137 b4 93 59 c5 pb7 i/o ft pb7 tim4_ch2/i2c1_sda/usart1_rx/pvd_in/ fsmc_nadv/ comp2_inp 138 a4 94 60 a6 boot0 i boot0 139 a3 95 61 d5 pb8 i/o ft pb8 tim4_ch3/tim10_ch1/i2c1_scl/lcd_seg16/ sdio_d4 140 b3 96 62 b6 pb9 i/o ft pb9 tim4_ch4/ tim11_ch1/i2c1_sda/lcd_com3/ sdio_d5 141 c3 97 - - pe0 i/o ft pe0 tim4_etr/t im10_ch1/lcd_seg36 /fsmc_nbl0 142 a2 98 - - pe1 i/o ft pe1 tim1 1_ch1/lcd_seg37/fsmc_nbl1 143 d3 99 63 a7 v ss_3 sv ss_3 144 c4 100 64 a8 v dd_3 sv dd_3 table 9. stm32l15xxd pin definitions (continued) pins pin name type (1) i / o level (2) main function (3) (after reset) alternate functions lqfp144 ufbga132 lqfp100 lqfp64 wlcsp64
pin descriptions STM32L151XD stm32l152xd 42/140 doc id 022027 rev 6 1. i = input, o = output, s = supply. 2. ft = 5 v tolerant. 3. function availability depends on the chosen device. 4. applicable to stm32l152xd devices only. in STM32L151XD devices, th is pin should be connected to v dd . 5. the pc14 and pc15 i/os are only configured as osc32_in/osc32_out when the lse oscillator is on (by setting the lseon bit in the rcc_csr register). the lse oscillator pins osc32_in/osc32_out c an be used as general-purpose ph0/ph1 i/os, respectively, when the lse osci llator is off (after reset, the lse oscillat or is off). the lse has priority over the gpio function. for more details, refer to using t he osc32_in/osc32_out pins as gpio pc14/pc15 port pins section in the stm32l151xx, stm32l152xx and stm32l162xx reference manual (rm0038). 6. the ph0 and ph1 i/os are only configured as osc_in/osc_o ut when the hse oscillator is on (by setting the hseon bit in the rcc_cr register). the hse oscillator pins osc_in/osc_out can be used as general-purpose ph0/ph1 i/os, respectively, when the hse oscillator is o ff ( after reset, the hse oscillator is off ). the hse has priority over the gpio function.
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 43/140 table 10. alternate function input/output port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system boot0 boot0 event out nrst nrst pa 0 - wkup1 wkup1/ tamper2 tim2_ch1_ etr tim5_ch1 usart2_cts comp1_inp/ timx_ic1_0/ g1io1 event out pa1 tim2_ch2 tim5_ch2 usart2_rts seg0 comp1_inp/ timx_ic2_0 g1io2 event out pa2 tim2_ch3 tim5_ch3 tim9_ch1 usart2_tx seg1 comp1_inp/ timx_ic3_0/ g1io3 event out pa3 tim2_ch4 tim5_ch4 tim9_ch2 usart2_rx seg2 comp1_inp/ timx_ic4_0/ g1io4 event out pa 4 spi1_nss spi3_nss i2s3_ws usart2_ck comp1_inp/ timx_ic1_1 event out pa5 tim2_ch1_etr spi1_sck comp1_inp/ timx_ic2_1 event out pa6 tim3_ch1 tim10_ ch1 spi1_miso seg3 comp1_inp/ timx_ic3_1 g2io1 event out pa7 tim3_ch2 tim11_ ch1 spi1_mosi seg4 comp1_inp/ timx_ic4_1/ g2io2 event out pa 8 m c o usart1_ck com0 timx_ic1_2/ g4io1 event out pa 9 usart1_tx com1 timx_ic2_2/ g4io2 event out pa 1 0 usart1_rx com2 timx_ic3_2/ g4io3 event out
pin descriptions STM32L151XD stm32l152xd 44/ doc id 022027 rev 6 pa 1 1 spi1_miso usart1_cts usbdm timx_ic4_2/ g4io4 event out pa 1 2 spi1_mosi usart1_rts usbdp timx_ic1_3/ event out pa13 jtms-swdio timx_ic2_3/ g5io1 event out pa14 jtck-swclk timx_ic3_3/ g5io2 even tout pa15 jtdi tim2_ch1_etr spi1_nss spi3_nss i2s3_ws seg17 timx_ic4_3/ g5io3 even tout pb0 tim3_ch3 seg5 comp1_inp/ g3io1 even tout pb1 tim3_ch4 seg6 comp1_inp/ g3io2 event out pb2 boot1 comp1_inp/ g3io3 event out pb3 jtdo tim2_ch2 spi1_sck spi3_sck i2s3_ck seg7 event out pb4 jtrst tim3_ch1 spi1_miso spi3_miso seg8 g6io1 event out pb5 tim3_ch2 i2c1_ smba spi1_mosi spi3_mosi i2s3_sd seg9 g6io2 event out pb6 tim4_ch1 i2c1_scl usart1_tx g6io3 event out pb7 tim4_ch2 i2c1_sda usart1_rx nadv g6io4 event out pb8 tim4_ch3 tim10_ ch1 i2c1_scl seg16 sdio_d4 event out pb9 tim4_ch4 tim11_ ch1 i2c1_sda com3 sdio_d5 event out table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 45/140 pb10 tim2_ch3 i2c2_scl usart3_tx seg10 event out pb11 tim2_ch4 i2c2_sda usart3_rx seg11 event out pb12 tim10_ ch1 i2c2_smba spi2_nss i2s2_ws usart3_ck seg12 comp1_inp/ g7io1 event out pb13 tim9_ ch1 spi2_sck i2s2_ck usart3_cts seg13 comp1_inp/ g7io2 event out pb14 tim9_ ch2 spi2_miso usart3_rts seg14 comp1_inp/ g7io3 event out pb15 rtc_refin tim11_ ch1 spi2_mosi i2s2_sd seg15 comp1_inp/ g7io4 event out pc0 seg18 comp1_inp/ timx_ic1_4/ g8io1 event out pc1 seg19 comp1_inp/ timx_ic2_4/ g8io2 event out pc2 seg20 comp1_inp/ timx_ic3_4/ g8io3 event out pc3 seg21 comp1_inp/ timx_ic4_4/ g8io4 event out pc4 seg22 comp1_inp/ timx_ic1_5/ g9io1 event out pc5 seg23 comp1_inp/ timx_ic2_5/ g9io2 event out pc6 tim3_ch1 i2s2_mck seg24 sdio_d6 timx_ic3_5/ g10io1 event out table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
pin descriptions STM32L151XD stm32l152xd 46/ doc id 022027 rev 6 pc7 tim3_ch2 i2s3_mck seg25 sdio_d7 timx_ic4_5/ g10io2 event out pc8 tim3_ch3 seg26 sdio_d0 timx_ic1_6/ g10io3 event out pc9 tim3_ch4 seg27 sdio_d1 timx_ic2_6/ g10io4 event out pc10 spi3_sck i2s3_ck usart3_tx uart4_tx com4/ seg28/ seg40 sdio_d2 timx_ic3_6/ g5io4 event out pc11 spi3_miso usart3_rx uart4_rx com5/ seg29 /seg41 sdio_d3 timx_ic4_6 event out pc12 spi3_mosi i2s3_sd usart3_ck uart5_tx com6/ seg30/ seg42 sdio_ck timx_ic1_7 event out pc13- wkup2 wkup2/ tamper1/ timestamp/ alarm_out/ 512hz timx_ic2_7 event out pc14 osc32_ in osc32_in timx_ic3_7 event out pc15 osc32_ out osc32_out timx_ic4_7 event out pd0 tim9_ch1 spi2_nss i2s2_ws d2 /da2 timx_ic1_8 event out pd1 spi2 sck i2s2_ck d3 /da3 timx_ic2_8 event out pd2 tim3_etr uart5_rx com7/ seg31/ seg43 sdio_ cmd timx_ic3_8 event out table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 47/140 pd3 spi2_miso usart2_cts clk timx_ic4_8 event out pd4 spi2_mosi i2s2_sd usart2_rts noe timx_ic1_9 event out pd5 usart2_tx nwe timx_ic2_9 event out pd6 usart2_rx nwait timx_ic3_9 event out pd7 tim9_ch2 usart2_ck ne1 timx_ic4_9 event out pd8 usart3_tx seg28 d13/da13 timx_ic1_10 event out pd9 usart3_rx seg29 d14/da14 timx_ic2_10 event out pd10 usart3_ck seg30 d15/da15 timx_ic3_10 event out pd11 usart3_cts seg31 a16 timx_ic4_10 event out pd12 tim4_ch1 usart3_rts seg32 a17 timx_ic1_11 event out pd13 tim4_ch2 seg33 a18 timx_ic2_11 event out pd14 tim4_ch3 seg34 d0/da0 timx_ic3_11 event out pd15 tim4_ch4 seg35 d1/da1 timx_ic4_11 event out pe0 tim4_etr tim10_ ch1 seg36 nbl0 timx_ic1_12 event out pe1 tim11_ ch1 seg37 nbl1 timx_ic2_12 event out table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
pin descriptions STM32L151XD stm32l152xd 48/ doc id 022027 rev 6 pe2 traceck tim3_etr seg 38 a23 timx_ic3_12 event out pe3 traced0 tim3_ch1 seg 39 a19 timx_ic4_12 event out pe4 traced1 tim3_ch2 a20 timx_ic1_13 event out pe5 traced2 tim9_ch1 a21 timx_ic2_13 event out pe6- wkup3 wkup3/ tamper3 / traced3 tim9_ch2 timx_ic3_13 event out pe7 d4/da4 comp1_inp/ timx_ic4_13 event out pe8 d5/da5 comp1_inp/ timx_ic1_14 event out pe9 tim2_ch1_etr d6/da6 comp1_inp/ timx_ic2_14 event out pe10 tim2_ch2 d7/da7 comp1_inp/ timx_ic3_14 event out pe11 tim2_ch3 d8/da8 timx_ic4_14 event out pe12 tim2_ch4 spi1_nss d9/da9 timx_ic1_15 event out pe13 spi1_sck d10/da10 timx_ic2_15 event out pe14 spi1_miso d11/da11 timx_ic3_15 event out pe15 spi1_mosi d12/da12 timx_ic4_15 event out pf0 a0 event out table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 49/140 pf1 a1 event out pf2 a2 event out pf3 a3 event out pf4 a4 event out pf5 a5 event out pf6 tim5_etr comp1_inp g11io1 event out pf7 tim5_ch2 comp1_inp g11io2 event out pf8 tim5_ch3 comp1_inp g11io3 event out pf9 tim5_ch4 comp1_inp g11io4 event out pf10 comp1_inp g11io5 event out pf11 comp1_inp g3io4 event out pf12 a6 g3io5 event out pf13 a7 g9io3 event out pf14 a8 g9io4 event out pf15 a9 g2io3 event out table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
pin descriptions STM32L151XD stm32l152xd 50/ doc id 022027 rev 6 pg0 a10 g2io4 event out pg1 a11 g2io5 event out pg2 a12 g7io5 event out pg3 a13 g7io6 event out pg4 a14 g7io7 event out pg5 a15 event out pg6 event out pg7 event out pg8 event out pg9 ne2 event out pg10 ne3 event out pg11 event out pg12 ne4 event out pg13 a24 event out pg14 a25 event out table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
STM32L151XD stm32l152xd pin descriptions doc id 022027 rev 6 51/140 pg15 event out ph0osc _in osc_in ph1osc _out osc_out ph2 a22 table 10. alternate function input/output (continued) port name digital alternat e function number afio0 afio1 afio2 afio3 afio4 afio5 afio6 afio7 afio8 .. afio10 afio11 afio12 .. afio14 afio15 alternate function system tim2 tim3/4/5 tim9/ 10/11 i2c1/2 spi1/2 spi3 usart 1/2/3 uart4/5 usb lcd fsmc/ sdio cpri system
memory mapping STM32L151XD stm32l152xd 52/140 doc id 022027 rev 6 5 memory mapping figure 8. memory map reserved 0x40 00 000 0 0x40 00 040 0 0x40 00 080 0 0x40 00 0c00 0x40 00 280 0 0x40 00 2c00 0x40 00 300 0 0x40 00 340 0 0x40 00 380 0 0x40 00 3c00 0x40 00 440 0 0x40 00 480 0 0x40 00 4c00 0x40 01 0c00 0x40 01 100 0 0x40 01 140 0 crc 0x40 02 300 0 tim2 reserve d 0x40 01 080 0 0x40 01 240 0 0x40 01 280 0 0x40 01 300 0 0x40 01 340 0 0x40 01 380 0 tim3 tim4 rtc wwdg iwdg spi2 usart2 usart3 syscfg tim9 tim11 rese rve d adc usart1 reserved 0x40 02 200 0 0x40 02 000 0 0x40 00 540 0 0x40 00 580 0 spi3 reserved spi1 i2c1 0x40 00 600 0 0x40 00 5c00 pwr tim10 i2c2 reserved exti reserved rcc flash interf ace reserved dma2 0x40 00 640 0 0x40 00 700 0 0x40 00 740 0 0x40 00 7c00 0x40 01 040 0 0x40 02 340 0 0x40 02 380 0 0x40 02 3c00 0x40 02 4000 0x40 02 600 0 0x40 02 6400 usb reg isters dma1 0 1 2 3 4 5 6 7 0x200 0 0 000 0x40 00 000 0 0x6 000 000 0 0x80 00 000 0 0xa000 000 0 0xc000 000 0 0xe00 0 0 000 0x ffff f fff 0x0 000 000 0 peripherals sram cortex- m3 internal peripherals 0xe010 0 000 ms18582v1 512 byte usb tim6 tim7 lcd tim5 0x4000 1000 0x4000 1400 0x4000 2400 0x4000 1c00 dac1 & 2 0x4000 7800 port a port b port c port d port e port h port f 0x4002 1c00 0x4002 1800 0x4002 1400 0x4002 1000 0x4002 0c00 0x4002 0800 0x4002 0400 comp + ri flash memory reserved rese rved 0x0 800 000 0 0x0 802 ffff 0x1 ff0 000 0 0x1 ff8 001 f system memory 0x1 ff0 0fff 0x1 ff8 000 0 aliased to flash or system memory depending on boot pins 0x0000 0000 rese rved data eeprom rese rved 0x0 808 000 0 0x0 808 17ff 0x40 01 000 0 reserved uart5 uart4 0x40 00 500 0 0x40 00 800 0 reserved 0x40 01 2c00 0x40 01 3c00 sdio port g reserved fsmc external memory 0x70 00 000 0 fsmc registers 0x40 02 67ff reserved reserved non- volatile memory reserved 0x40 00 400 0 bank 1 0x0 805 ffff flash memory bank 2 bank 1 data eeprom bank 2 0x0 808 2fff bank 1 0x1 ff0 1fff system memory bank 2 option bytes bank 2 rese rved 0x1 ff8 008 0 0x1 ff8 009f option bytes bank 1
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 53/140 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified the minimum and ma ximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, desi gn simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3 ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = 3.6 v (for the 1.65 v v dd 3.6 v voltage range). they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2 ) . 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 9 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 10 . figure 9. pin loading condition s figure 10. pin input voltage ai17851 c = 50 pf stm32l15xxx pin ai17852 stm32l15xxx pin v in
electrical characteristics STM32L151XD stm32l152xd 54/140 doc id 022027 rev 6 6.1.6 power supply scheme figure 11. power supply scheme 6.1.7 current con sumption measurement figure 12. current consumption measurement scheme ms18291v2 v dd1/2/.../n an alo g: rcs, pll, ... gp i/o s out in kernel logic (cpu, digital & memories) standby-power circuitry (osc32k,rtc, rtc backup registers) wake-up logic n 100 nf + 1 4.7 f regulator v ss1/2/.../n v dda v ref+ v ref- v ssa adc level shifter io logic v dd 10 nf + 1 f v ref 10 nf + 1 f v dd ai14126b v dd v dda i dd
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 55/140 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 11: voltage characteristics , table 12: current characteristics , and table 13: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. table 11. voltage characteristics symbol ratings min max unit v dd ?v ss external main supply voltage (including v dda and v dd ) (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. ?0.3 4.0 v v in (2) 2. v in maximum must always be respected. refer to table 12 for maximum allowed injected current values. input voltage on five-volt tolerant pin v ss ? 0.3 v dd +4.0 input voltage on any other pin v ss ? 0.3 4.0 | v ddx | variations between different v dd power pins 50 mv |v ssx ? v ss | variations between all different ground pins 50 v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.11 table 12. current characteristics symbol ratings max. unit i vdd total current into v dd /v dda power lines (source) (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. 80 ma i vss total current out of v ss ground lines (sink) (1) 80 i io output current sunk by any i/o and control pin 25 output current sourced by any i/o and control pin - 25 i inj(pin) (2) 2. negative injection disturbs the analog performance of the device. see note in section 6.3.19 . injected current on five-volt tolerant i/o (3) 3. positive current injection is not possible on these i/os. a negative injection is induced by v in v dd while a negative injection is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 11: voltage characteristics for the maximum allowed input voltage values. 5 i inj(pin) total injected current (sum of all i/o and control pins) (5) 5. when several inputs are submitted to a current injection, the maximum i inj(pin) is the absolute sum of the positive and negative injected cu rrents (instantaneous values). 25
electrical characteristics STM32L151XD stm32l152xd 56/140 doc id 022027 rev 6 6.3 operating conditions 6.3.1 general operating conditions 6.3.2 embedded reset and power control block characteristics the parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in ta b l e 1 4 . table 13. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c table 14. general operating conditions symbol parameter co nditions min max unit f hclk internal ahb clock frequency 0 32 mhz f pclk1 internal apb1 clock frequency 0 32 f pclk2 internal apb2 clock frequency 0 32 v dd standard operating voltage bor detector disabled 1.65 3.6 v bor detector enabled, at power on 1.8 3.6 bor detector disabled, after power on 1.65 3.6 v dda (1) 1. when the adc is used, refer to table 64: adc characteristics . analog operating voltage (adc and dac not used) must be the same voltage as v dd (2) 2. it is recommended to power v dd and v dda from the same source. a maximum difference of 300 mv between v dd and v dda can be tolerated during power-up and operation. 1.65 3.6 v analog operating voltage (adc or dac used) 1.8 3.6 p d power dissipation at t a = 85 c (3) 3. if t a is lower, higher p d values are allowed as long as t j does not exceed t j max (see table 78: thermal characteristics on page 134 ). ufbga132 package 333 mw t a temperature range maximum power dissipation ?40 85 c low power dissipation (4) 4. in low power dissipation state, t a can be extended to this range as long as t j does not exceed t j max (see table 78: thermal characteristics on page 134 ). ?40 105 t j junction temperature range -40 c t a 105 c ?40 105 c
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 57/140 table 15. embedded reset and power control block characteristics symbol parameter conditions min typ max unit t vdd (1) v dd rise time rate bor detector enabled 0 s/v bor detector disabled 0 1000 v dd fall time rate bor detector enabled 20 bor detector disabled 0 1000 t rsttempo (1) reset temporization v dd rising, bor enabled 2 3.3 ms v dd rising, bor disabled (2) 0.4 0.7 1.6 v por/pdr power on/power down reset threshold falling edge 1 1.5 1.65 v rising edge 1.3 1.5 1.65 v bor0 brown-out reset threshold 0 falling edge 1.67 1.7 1.74 rising edge 1.69 1.76 1.8 v bor1 brown-out reset threshold 1 falling edge 1.87 1.93 1.97 rising edge 1.96 2.03 2.07 v bor2 brown-out reset threshold 2 falling edge 2.22 2.30 2.35 rising edge 2.31 2.41 2.44 v bor3 brown-out reset threshold 3 falling edge 2.45 2.55 2.60 rising edge 2.54 2.66 2.7 v bor4 brown-out reset threshold 4 falling edge 2.68 2.8 2.85 rising edge 2.78 2.9 2.95 v pvd0 programmable voltage detector threshold 0 falling edge 1.8 1.85 1.88 rising edge 1.88 1.94 1.99 v pvd1 pvd threshold 1 falling edge 1.98 2.04 2.09 rising edge 2.08 2.14 2.18 v pvd2 pvd threshold 2 falling edge 2.20 2.24 2.28 rising edge 2.28 2.34 2.38 v pvd3 pvd threshold 3 falling edge 2.39 2.44 2.48 rising edge 2.47 2.54 2.58 v pvd4 pvd threshold 4 falling edge 2.57 2.64 2.69 rising edge 2.68 2.74 2.79 v pvd5 pvd threshold 5 falling edge 2.77 2.83 2.88 rising edge 2.87 2.94 2.99 v pvd6 pvd threshold 6 falling edge 2.97 3.05 3.09 rising edge 3.08 3.15 3.20
electrical characteristics STM32L151XD stm32l152xd 58/140 doc id 022027 rev 6 v hyst hysteresis voltage bor0 threshold - 40 - mv all bor and pvd thresholds excepting bor0 -100- 1. guaranteed by characterisati on, not tested in production. 2. valid for device version without bor at power up. please see option "d" in order ing information scheme for more details. table 15. embedded reset and power control block characteristics (continued) symbol parameter conditions min typ max unit
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 59/140 6.3.3 embedded internal reference voltage the parameters given in ta bl e 1 6 are based on characterization results, unless otherwise specified. table 16. embedded internal reference voltage symbol parameter conditions min typ max unit v refint out (1) internal reference voltage ? 40 c < t j < +105 c 1.202 1.224 1.242 v i refint internal reference current consumption -1.42.3 a t vrefint internal reference startup time - 2 3 ms v vref_meas v dda and v ref+ voltage during v refint factory measure 2.99 3 3.01 v a vref_meas accuracy of factory-measured v ref value (2) including uncertainties due to adc and v dda /v ref+ values --5mv t coeff (3) temperature coefficient ?40 c < t j < +105 c - 20 50 ppm/c 0 c < t j < +50 c - - 20 a coeff (3) long-term stability 1000 hours, t= 25 c - - 1000 ppm vddcoeff (3) voltage coefficient 3.0 v < v dda < 3.6 v - - 2000 ppm/v t s_vrefint (3)(4) adc sampling time when reading the internal reference voltage - 5 10 s t adc_buf (3) startup time of reference voltage buffer for adc - - 10 s i buf_adc (3) consumption of reference voltage buffer for adc -13.525 a i vref_out (3) vref_out output current (5) -- 1 a c vref_out (3) vref_out output load - - 50 pf i lpbuf (3) consumption of reference voltage buffer for vref_out and comp - 730 1200 na v refint_div1 (3) 1/4 reference voltage 24 25 26 % v refint v refint_div2 (3) 1/2 reference voltage 49 50 51 v refint_div3 (3) 3/4 reference voltage 74 75 76 1. tested in production. 2. the internal v ref value is individually measured in production and stored in dedicated eeprom bytes. 3. guaranteed by design, not tested in production. 4. shortest sampling time can be determined in the application by multiple iterations. 5. to guarantee less than 1% vref_out deviation.
electrical characteristics STM32L151XD stm32l152xd 60/140 doc id 022027 rev 6 6.3.4 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, i/o pin loading, device software configuration, operating frequencies, i/o pin switching rate, program location in memory and executed binary code. the current consumption is measured as described in figure 12: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to dhrystone 2.1 code. maximum current consumption the mcu is placed under the following conditions: v dd = 3.6 v all i/o pins are in input mode with a static value at v dd or v ss (no load) all peripherals are disabled except when explicitly mentioned the flash memory access time is adjusted depending on f hclk frequency and voltage range prefetch and 64-bit access are enabled in configurations with 1 wait state the parameters given in ta bl e 1 7 , ta bl e 1 4 and ta bl e 1 5 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta b l e 1 4 . table 17. current consumption in run mode, code with data processing running from flash symbol parameter conditions f hclk typ max (1) unit 55 c 85 c 105 c i dd (run from flash) supply current in run mode, code executed from flash f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 360 500 500 500 a 2 mhz 620 750 750 750 4 mhz 1070 1200 1200 1200 range 2, v core =1.5 v vos[1:0] = 10 4 mhz 1.30 1.6 1.6 1.6 ma 8 mhz 2.4 2.9 2.9 2.9 16 mhz 4.6 5.2 5.2 5.2 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 2.9 3.5 3.5 3.5 16 mhz 5.7 6.5 6.5 6.5 32 mhz 10.4 12 12 12 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 4.5 5.2 5.2 5.2 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 10.9 12.3 12.3 12.3 msi clock, 65 khz range 3, v core =1.2 v vos[1:0] = 11 65 khz 0.05 0.079 0.092 0.13 msi clock, 524 khz 524 khz 0.17 0.2 0.21 0.25 msi clock, 4.2 mhz 4.2 mhz 1.0 1.1 1.1 1.2 1. based on characterization, not tested in production, unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register).
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 61/140 table 18. current consumption in run mode, code with data processing running from ram symbol parameter conditions f hclk typ max (1) unit 55 c 85 c 105 c i dd (run from ram) supply current in run mode, code executed from ram, flash switched off f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 310 470 470 470 a 2 mhz 590 780 780 780 4 mhz 1030 1200 1200 1200 (3) range 2, v core =1.5 v vos[1:0] = 10 4 mhz 1.2 1.5 1.5 1.5 ma 8 mhz 2.3 3 3 3 16 mhz 4.3 5 5 5 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 2.7 3.5 3.5 3.5 16 mhz 5.0 5.55 5.55 5.55 32 mhz 9.8 10.9 10.9 10.9 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 4.3 4.8 4.8 4.8 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 10.1 11.7 11.7 11.7 msi clock, 65 khz range 3, v core =1.2 v vos[1:0] = 11 65 khz 40 48.5 63 100 a msi clock, 524 khz 524 khz 148 175 183 215 msi clock, 4.2 mhz 4.2 mhz 990 1032 1034 1100 1. based on characterization, not tested in production, unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register). 3. tested in production.
electrical characteristics STM32L151XD stm32l152xd 62/140 doc id 022027 rev 6 table 19. current consumption in sleep mode symbol parameter conditions f hclk typ max (1) unit 55 c 85 c 105 c i dd (sleep) supply current in sleep mode, code executed from ram, flash switched off f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 180 220 220 220 a 2 mhz 225 300 300 300 4 mhz 300 380 380 380 (3) range 2, v core =1.5 v vos[1:0] = 10 4 mhz 360 500 500 500 8 mhz 570 700 700 700 16 mhz 990 1100 1100 1100 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 675 800 800 800 16 mhz 1150 1250 1250 1250 32 mhz 2300 2700 2700 2700 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 1025 1100 1100 1100 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 2460 2700 2700 2700 msi clock, 65 khz range 3, v core =1.2 v vos[1:0] = 11 65 khz 30 36 46 72 msi clock, 524 khz 524 khz 50 58 67 92 msi clock, 4.2 mhz 4.2 mhz 210 245 251 273 supply current in sleep mode, code executed from flash f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 190 250 250 250 a 2 mhz 235 300 300 300 4 mhz 315 380 380 380 range 2, v core =1.5 v vos[1:0] = 10 4 mhz 390 500 500 500 8 mhz 600 700 700 700 16 mhz 1000 1120 1120 1120 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 690 800 800 800 16 mhz 1160 1300 1300 1300 32 mhz 2310 2700 2700 2700 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 1040 1160 1160 1160 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 2500 2800 2800 2800 i dd (sleep) supply current in sleep mode, code executed from flash msi clock, 65 khz range 3, v core =1.2v vos[1:0] = 11 65 khz 42 50 60 90 a msi clock, 524 khz 524 khz 63 72 82 110 msi clock, 4.2 mhz 4.2 mhz 230 263 265 290
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 63/140 1. based on characterization, not tested in production, unless otherwise specified. 2. oscillator bypassed (hseb yp = 1 in rcc_cr register) 3. tested in production. table 20. current consumption in low power run mode symbol parameter conditions typ max (1) 1. based on characterization, not tested in production, unless otherwise specified. unit i dd (lp run) supply current in low power run mode all peripherals off, code executed from ram, flash switched off, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 11 14 a t a = 85 c 26 32 t a = 105 c 53 72 msi clock, 65 khz f hclk = 65 khz t a =-40 c to 25 c 18 21 t a = 85 c 33 40 t a = 105 c 60 78 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 36 41 t a = 55 c 39 44 t a = 85 c 50 58 t a = 105 c 78 95 all peripherals off, code executed from flash, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 36 40.5 t a = 85 c 53 60 t a = 105 c 81 100 msi clock, 65 khz f hclk = 65 khz t a = -40 c to 25 c 44 49 t a = 85 c 61 67 t a = 105 c 89 107 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 64 71 t a = 55 c 68 73 t a = 85 c 80 88 t a = 105 c 101 110 i dd max (lp run) max allowed current in low power run mode v dd from 1.65 v to 3.6 v - 200
electrical characteristics STM32L151XD stm32l152xd 64/140 doc id 022027 rev 6 table 21. current consumption in low power sleep mode symbol parameter conditions typ max (1) 1. based on characterization, not tested in production, unless otherwise specified. unit i dd (lp sleep) supply current in low power sleep mode all peripherals off, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz flash off t a = -40 c to 25 c 4.4 - a msi clock, 65 khz f hclk = 32 khz flash on t a = -40 c to 25 c 18 21 t a = 85 c 24 27 t a = 105 c 35 43 msi clock, 65 khz f hclk = 65 khz, flash on t a = -40 c to 25 c 18.6 21 t a = 85 c 24.5 28 t a = 105 c 35 42 msi clock, 131 khz f hclk = 131 khz, flash on t a = -40 c to 25 c 22 25 t a = 55 c 23.5 26 t a = 85 c 28.5 31 t a = 105 c 39 45 tim9 and usart1 enabled, flash on, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 18 20.5 t a = 85 c 24 27 t a = 105 c 35 43 msi clock, 65 khz f hclk = 65 khz t a = -40 c to 25 c 18.6 21 t a = 85 c 24.5 28 t a = 105 c 35 42 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 22 25 t a = 55 c 23.5 26 t a = 85 c 28.5 31 t a = 105 c 39 45 i dd max (lp sleep) max allowed current in low power sleep mode v dd from 1.65 v to 3.6 v - 200
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 65/140 table 22. typical and maximum current consumptions in stop mode symbol parameter conditions typ max (1) unit i dd (stop with rtc) supply current in stop mode with rtc enabled rtc clocked by lsi or lse external clock (32.768khz), regulator in lp mode,hsi and hse off (no independent watchdog) lcd off t a = -40c to 25c v dd = 1.8 v 1.5 a t a = -40c to 25c 1.7 4 t a = 55c 2.4 6 t a = 85c 5.4 10 t a = 105c 11.0 23 lcd on (static duty) (2) t a = -40c to 25c 3.8 6 t a = 55c 4.4 7 t a = 85c 7.4 12 t a = 105c 14.4 27 lcd on (1/8 duty) (3) t a = -40c to 25c 7.8 10 t a = 55c 8.3 11 t a = 85c 11.4 16 t a = 105c 20.5 44 rtc clocked by lse external quartz (32.768khz), regulator in lp mode, hsi and hse off (no independent watchdog (4) lcd off t a = -40c to 25c 2.1 - t a = 55c 2.8 - t a = 85c 3.8 - t a = 105c 11.1 - lcd on (static duty) (2) t a = -40c to 25c 4.2 - t a = 55c 4.8 - t a = 85c 7.9 - t a = 105c 15.0 - lcd on (1/8 duty) (3) t a = -40c to 25c 8.2 - t a = 55c 8.7 - t a = 85c 11.9 - t a = 105c 21.4 - lcd off t a = -40c to 25c v dd = 1.8v 1.6 - t a = -40c to 25c v dd = 3.0v 1.9 - t a = -40c to 25c v dd = 3.6v 2.1 -
electrical characteristics STM32L151XD stm32l152xd 66/140 doc id 022027 rev 6 i dd (stop) supply current in stop mode (rtc disabled) regulator in lp mode, hsi and hse off, independent watchdog and lsi enabled t a = -40c to 25c 1.6 2.2 a regulator in lp mode, lsi, hsi and hse off (no independent watchdog) t a = -40c to 25c 0.65 1 t a = 55c 1.3 3 t a = 85c 4.4 9 t a = 105c 10.0 22 (5) i dd (wu from stop) supply current during wakeup from stop mode msi = 4.2 mhz t a = -40c to 25c 2- ma msi = 1.05 mhz 1.45 - msi = 65 khz (6) 1.45 - 1. based on characterization, not tested in production, unless otherwise specified. 2. lcd enabled with external vlcd, static duty, divi sion ratio = 256, all pixels active, no lcd connected. 3. lcd enabled with external vlcd, 1/8 duty, 1/3 bias, di vision ratio = 64, all pixels active, no lcd connected. 4. based on characterization done with a 32.768 khz crystal (m c306-g-06q-32.768, manufacturer jfvny) with two 6.8 pf loading capacitors. 5. tested in production. 6. when msi = 64 khz, the rms current is measured over the fi rst 15 s following the wakeup event. for the remaining part of the wakeup period, the current corresponds the run mode current. table 22. typical and maximum current consumptions in stop mode (continued) symbol parameter conditions typ max (1) unit table 23. typical and maximum current consumptions in standby mode symbol parameter conditions typ max (1) unit i dd (standby with rtc) supply current in standby mode with rtc enabled rtc clocked by lsi (no independent watchdog) t a = -40 c to 25 c 1.3 1.9 a t a = 55 c 1.44 2.2 t a = 85 c 1.90 4 t a = 105 c 3.05 8.3 (2) rtc clocked by lse external quartz(no independent watchdog) (3) t a = -40 c to 25 c 1.7 - t a = 55 c 1.84 - t a = 85 c 2.33 - t a = 105 c 3.59 - i dd (standby) supply current in standby mode (rtc disabled) independent watchdog and lsi enabled t a = -40 c to 25 c 1 1.7 independent watchdog and lsi off t a = -40 c to 25 c 0.35 0.6 t a = 55 c 0.47 0.9 t a = 85 c 1.2 2.75 t a = 105 c 2.9 7 (2) i dd (wu from standby) supply current during wakeup time from standby mode t a = -40 c to 25 c 1 - 1. based on characterization, not tested in production, unless otherwise specified
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 67/140 2. tested in production. 3. based on characterization done with a 32.768 khz crystal (m c306-g-06q-32.768, manufacturer jfvny) with two 6.8pf loading capacitors.
electrical characteristics STM32L151XD stm32l152xd 68/140 doc id 022027 rev 6 wakeup time from low-power mode the wakeup times given in the following table are measured with the msi rc oscillator. the clock source used to wake up the device depends on the current operating mode: sleep mode: the clock source is the clock that was set before entering sleep mode stop mode: the clock source is the msi os cillator in the range configured before entering stop mode standby mode: the clock source is the msi osc illator running at 2.1 mhz all timings are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 1 4 . table 24. typical and maximum timings in low power modes symbol parameter conditions typ max (1) 1. based on characterization, not tested in production, unless otherwise specified unit t wusleep wakeup from sleep mode f hclk = 32 mhz 0.4 - s t wusleep_lp wakeup from low power sleep mode f hclk = 262 khz f hclk = 262 khz flash enabled 46 - f hclk = 262 khz flash switched off 46 - t wustop wakeup from stop mode, regulator in run mode f hclk = f msi = 4.2 mhz 8.2 - wakeup from stop mode, regulator in low power mode f hclk = f msi = 4.2 mhz voltage range 1 and 2 7.7 8.9 f hclk = f msi = 4.2 mhz voltage range 3 8.2 13.1 f hclk = f msi = 2.1 mhz 10.2 13.4 f hclk = f msi = 1.05 mhz 16 20 f hclk = f msi = 524 khz 31 37 f hclk = f msi = 262 khz 57 66 f hclk = f msi = 131 khz 112 123 f hclk = msi = 65 khz 221 236 t wustdby wakeup from standby mode fwu bit = 1 f hclk = msi = 2.1 mhz 58 104 wakeup from standby mode fwu bit = 0 f hclk = msi = 2.1 mhz 2.6 3.25 ms
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 69/140 on-chip peripheral current consumption the current consumption of the on-chip peripherals is given in the following table. the mcu is placed under the following conditions: all i/o pins are in input mode with a static value at v dd or v ss (no load) all peripherals are disabled unless otherwise mentioned the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on table 25. peripheral current consumption (1) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core = 1.8 v vos[1:0] = 01 range 2, v core = 1.5 v vos[1:0] = 10 range 3, v core = 1.2 v vos[1:0] = 11 low power sleep and run apb1 tim2 13 11 9 11 a/mhz (f hclk ) tim3 12 10 9 11 tim4 12 10 9 11 tim5 16 13 11 14 tim6 4444 tim7 4444 lcd 4334 wwdg 3 2.5 2.5 3 spi2 8797.5 spi3 7676 usart2 8 7 7 7 usart3 8 7 7 7 usart4 8 7 7 7 usart5 8 7 7 7 i2c1 8767 i2c2 7656 usb 15 7 7 7 pwr 3333 dac 6 5 4.5 5 comp 43.53.54
electrical characteristics STM32L151XD stm32l152xd 70/140 doc id 022027 rev 6 apb2 syscfg & ri 3223 a/mhz (f hclk ) tim9 8767 tim10 6555 tim11 6555 adc (2) 10 8 7 8 sdio 20 6 5 6 spi1 4444 usart1 8 7 6 7 ahb gpioa7656 gpiob7656 gpioc7656 gpiod7656 gpioe7656 gpiof7656 gpiog7656 gpioh2212 crc 0.5 0.5 0.5 1 flash 26 26 29 - (3) dma1 18 15 13 18 dma2 16 14 12 16 fsmc 15 12 10 12 all enabled 279 221 219 215 table 25. peripheral current consumption (1) (continued) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core = 1.8 v vos[1:0] = 01 range 2, v core = 1.5 v vos[1:0] = 10 range 3, v core = 1.2 v vos[1:0] = 11 low power sleep and run
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 71/140 6.3.5 external cloc k source characteristics high-speed external user clock generated from an external source i dd (rtc) 0.4 a i dd (lcd) 3.1 i dd (adc) (4) 1450 i dd (dac) (5) 340 i dd (comp1) 0.16 i dd (comp2) slow mode 2 fast mode 5 i dd (pvd / bor) (6) 2.6 i dd (iwdg) 0.25 1. data based on differential i dd measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f hclk = 32 mhz (range 1), f hclk = 16 mhz (range 2), f hclk = 4 mhz (range 3), f hclk = 64khz (low power run/sleep), f apb1 = f hclk , f apb2 = f hclk , default prescaler value for each peripheral. the cpu is in sleep mo de in both cases. no i/o pins toggling. not tested in production. 2. hsi oscillator is off for this measure. 3. in low power sleep and run mode, the flash memory must always be in power-down mode. 4. data based on a differential i dd measurement between adc in reset configuration and continuous adc conversion (hsi consumption not included). 5. data based on a differential i dd measurement between dac in reset configuration and continuous dac conversion of v dd /2. dac is in buffered mode, output is left floating. 6. including supply current of internal reference voltage. table 25. peripheral current consumption (1) (continued) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core = 1.8 v vos[1:0] = 01 range 2, v core = 1.5 v vos[1:0] = 10 range 3, v core = 1.2 v vos[1:0] = 11 low power sleep and run table 26. high-speed external user clock characteristics (1) symbol parameter conditions min typ max unit f hse_ext user external clock source frequency 1832mhz v hseh osc_in input pin high level voltage 0.7v dd -v dd v v hsel osc_in input pin low level voltage v ss -0.3v dd t w(hse) t w(hse) osc_in high or low time 12 - - ns t r(hse) t f(hse) osc_in rise or fall time - - 20 c in(hse) osc_in input capacitance - 2.6 - pf
electrical characteristics STM32L151XD stm32l152xd 72/140 doc id 022027 rev 6 ducy (hse) duty cycle 45 - 55 % i l osc_in input leakage current v ss v in v dd --1a 1. guaranteed by design, not tested in production. table 26. high-speed external user clock characteristics (1) symbol parameter conditions min typ max unit
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 73/140 low-speed external user clock generated from an external source the characteristics given in the following table result from tests performed using a low- speed external clock source, and under ambien t temperature and supply voltage conditions summarized in ta b l e 1 4 . figure 13. low-speed external clock source ac timing diagram table 27. low-speed external user clock characteristics (1) 1. guaranteed by design, not tested in production symbol parameter conditions min typ max unit f lse_ext user external clock source frequency 1 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7v dd -v dd v v lsel osc32_in input pin low level voltage v ss -0.3v dd t w(lse) t w(lse) osc32_in high or low time 465 - - ns t r(lse) t f(lse) osc32_in rise or fall time - - 10 c in(lse) osc32_in input capacitance - 0.6 - pf ducy (lse) duty cycle 45 - 55 % i l osc32_in input leakage current v ss v in v dd --1a ai18233 osc32_in exter nal stm32lxx clock source v lseh t f(lse) t w(lse) i l 90% 10% t lse t t r(lse) t w(lse) f lse_ext v lsel
electrical characteristics STM32L151XD stm32l152xd 74/140 doc id 022027 rev 6 figure 14. high-speed external clock source ac timing diagram high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 1 to 24 mhz crystal/ceramic resonator oscillato r. all the information given in this paragraph are based on characterization results obtained with typical external components specified in ta bl e 2 8 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai18232 os c _i n exter nal stm32lxx clock source v hseh t f(hse) t w(hse) i l 90% 10% t hse t t r(hse) t w(hse) f hse_ext v hsel
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 75/140 for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 25 pf range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see figure 15 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the comb ined pin and board capacitance) when sizing c l1 and c l2 . refer to the application note an28 67 ?oscillator design guide for st microcontrollers? available fr om the st website www.st.com. table 28. hse 1-24 mhz oscillator characteristics (1)(2) 1. resonator characte ristics given by the crystal/ ceramic resonator manufacturer. 2. based on characterization results, not tested in production. symbol parameter conditions min typ max unit f osc_in oscillator frequency 1 24 mhz r f feedback resistor - 200 - k c recommended load capacitance versus equivalent serial resistance of the crystal (r s ) (3) 3. the relatively low value of the rf resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and t he bias condition change. however, it is recommended to take this point into account if the mcu is used in tough humidity conditions. r s = 30 -20 - pf i hse hse driving current v dd = 3.3 v, v in =v ss with 30 pf load -- 3 ma i dd(hse) hse oscillator power consumption c = 20 pf f osc = 16 mhz -- 2.5 (startup) 0.7 (stabilized) ma c = 10 pf f osc = 16 mhz -- 2.5 (startup) 0.46 (stabilized) g m oscillator transconductance startup 3.5 - - ma /v t su(hse) (4) 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standard crystal resonat or and it can vary significantly with the crystal manufacturer. startup time v dd is stabilized - 1 - ms
electrical characteristics STM32L151XD stm32l152xd 76/140 doc id 022027 rev 6 figure 15. hse oscillator circuit diagram 1. r ext value depends on the cr ystal characteristics. low-speed external clock generated from a crystal/ceramic resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal/ceramic resonator oscillato r. all the information given in this paragraph are based on characterization results obtained with typical external components specified in ta bl e 2 9 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). table 29. lse oscillator characteristics (f lse = 32.768 khz) (1) 1. based on characterization , not tested in production. symbol parameter conditions min typ max unit f lse low speed external oscillator frequency - 32.768 - khz r f feedback resistor - 1.2 - m c (2) 2. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. recommended load capacitance versus equivalent serial resistance of the crystal (r s ) (3) 3. the oscillator selection can be optimized in terms of supply current using an hi gh quality resonator with small r s value for example msiv-tin32.768khz. refer to crystal manufacturer for more details. r s = 30 k -8 -pf i lse lse driving current v dd = 3.3 v, v in = v ss --1.1a i dd (lse) lse oscillator current consumption v dd = 1.8 v - 450 - na v dd = 3.0 v - 600 - v dd = 3.6v - 750 - g m oscillator transconductance 3 - a/v t su(lse) (4) 4. t su(lse) is the startup time measured from the mom ent it is enabled (by software) to a stabilized 32.768 khz oscillation is reached. this value is measured for a standard cr ystal resonator and it can vary significantly with t he crystal manufacturer. startup time v dd is stabilized - 1 - s osc_out osc_in f hse to core c l1 c l2 r f stm32 resonator consumption control g m r m c m l m c o resonator ai18235
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 77/140 note: for c l1 and c l2 , it is recommended to use high-quality ceramic capacitors in the 5 pf to 15 pf range selected to match the requirements of the crystal or resonator (see figure 16 ). c l1 and c l2, are usually the same size. the crystal ma nufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . load capacitance c l has the following formula: c l = c l1 x c l2 / ( c l1 + c l2 ) + c stray where c stray is the pin capacitance and board or trace pcb-related capacitance. typically, it is between 2 pf and 7 pf. caution: to avoid exceeding the maximum value of c l1 and c l2 (15 pf) it is strongly recommended to use a resonator with a load capacitance c l 7 pf. never use a resonator with a load capacitance of 12.5 pf. example: if you choose a resonator with a load capacitance of c l = 6 pf and c stray = 2 pf, then c l1 = c l2 = 8 pf. figure 16. typical application with a 32.768 khz crystal ai17853 osc32_ou t osc32_in f lse c l1 r f stm32l15xxx 32.768 kh z resonator c l2 resonator with integrated capacitors bias controlled gain
electrical characteristics STM32L151XD stm32l152xd 78/140 doc id 022027 rev 6 6.3.6 internal clock source characteristics the parameters given in ta bl e 3 0 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta b l e 1 4 . high-speed internal (hsi) rc oscillator low-speed internal (lsi) rc oscillator table 30. hsi oscillator characteristics symbol parameter conditions min typ max unit f hsi frequency v dd = 3.0 v - 16 - mhz trim (1)(2) 1. the trimming step differs depending on the trimming c ode. it is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xe0). hsi user-trimmed resolution trimming code is not a multiple of 16 - 0.4 0.7 % trimming code is a multiple of 16 - - 1.5 % acc hsi (2) 2. based on characterization , not tested in production. accuracy of the factory-calibrated hsi oscillator v dda = 3.0 v, t a = 25 c -1 (3) 3. tested in production. -1 (3) % v dda = 3.0 v, t a = 0 to 55 c -1.5 - 1.5 % v dda = 3.0 v, t a = -10 to 70 c -2 - 2 % v dda = 3.0 v, t a = -10 to 85 c -2.5 - 2 % v dda = 3.0 v, t a = -10 to 105 c -4 - 2 % v dda = 1.65 v to 3.6 v t a = -40 to 105 c -4 - 3 % t su(hsi) (2) hsi oscillator startup time -3.76s i dd(hsi) (2) hsi oscillator power consumption -100140a table 31. lsi oscillator characteristics symbol parameter min typ max unit f lsi (1) 1. tested in production. lsi frequency 26 38 56 khz d lsi (2) 2. this is a deviation for an individual part, once the in itial frequency has been measured. lsi oscillator frequency drift 0c t a 85c -10 - 4 % t su(lsi) (3) 3. guaranteed by design, not tested in production. lsi oscillator startup time - - 200 s i dd(lsi) (3) lsi oscillator power consumption - 400 510 na
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 79/140 multi-speed internal (msi) rc oscillator table 32. msi oscillator characteristics symbol parameter condition typ max unit f msi frequency after factory calibration, done at v dd = 3.3 v and t a = 25 c msi range 0 65.5 - khz msi range 1 131 - msi range 2 262 - msi range 3 524 - msi range 4 1.05 - mhz msi range 5 2.1 - msi range 6 4.2 - acc msi frequency error after factory calibration 0.5 - % d temp(msi) (1) msi oscillator frequency drift 0c t a 85 c 3- % d volt(msi) (1) msi oscillator frequency drift 1.65 v v dd 3.6 v, t a = 25 c -2.5%/v i dd(msi) (2) msi oscillator power consumption msi range 0 0.75 - a msi range 1 1 - msi range 2 1.5 - msi range 3 2.5 - msi range 4 4.5 - msi range 5 8 - msi range 6 15 -
electrical characteristics STM32L151XD stm32l152xd 80/140 doc id 022027 rev 6 t su(msi) msi oscillator startup time msi range 0 30 - s msi range 1 20 - msi range 2 15 - msi range 3 10 - msi range 4 6 - msi range 5 5 - msi range 6, voltage range 1 and 2 3.5 - msi range 6, voltage range 3 5- t stab(msi) (2) msi oscillator stabilization time msi range 0 - 40 msi range 1 - 20 msi range 2 - 10 msi range 3 - 4 msi range 4 - 2.5 msi range 5 - 2 msi range 6, voltage range 1 and 2 -2 msi range 3, voltage range 3 -3 f over(msi) msi oscillator frequency overshoot any range to range 5 -4 mhz any range to range 6 -6 1. this is a deviation for an individual part, once the in itial frequency has been measured. 2. based on characterization , not tested in production. table 32. msi oscillator characteristics (continued) symbol parameter condition typ max unit
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 81/140 6.3.7 pll characteristics the parameters given in ta bl e 3 3 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta b l e 1 4 . 6.3.8 memory characteristics the characteristics are given at t a = -40 to 105 c unless otherwise specified. ram memory table 34. ram and hardware registers table 33. pll characteristics symbol parameter value unit min typ max (1) 1. based on characterization , not tested in production. f pll_in pll input clock (2) 2. take care of using the appropriate multiplier factors so as to have pll input clock values compatible with the range defined by f pll_out . 2- 24mhz pll input clock duty cycle 45 - 55 % f pll_out pll output clock 2 - 32 mhz t lock worst case pll lock time pll input = 2 mhz pll vco = 96 mhz - 100 130 s jitter cycle-to-cycle jitter - 600 ps i dda (pll) current consumption on v dda - 220 450 a i dd (pll) current consumption on v dd - 120 150 symbol parameter conditions min typ max unit vrm data retention mode (1) 1. minimum supply voltage without losing data stored in ram (in stop mode or under reset) or in hardware registers (only in stop mode). stop mode (or reset) 1.65 - - v
electrical characteristics STM32L151XD stm32l152xd 82/140 doc id 022027 rev 6 flash memory and data eeprom table 35. flash memory and data eeprom characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design, not tested in production. unit v dd operating voltage read / write / erase 1.65 - 3.6 v t prog programming time for word or half-page erasing - 3.28 3.94 ms programming - 3.28 3.94 i dd average current during the whole programming / erase operation t a = 25 c, v dd = 3.6 v - 600 900 a maximum current (peak) during the whole programming / erase operation -1.52.5ma table 36. flash memory and data eeprom endurance and retention symbol parameter conditions value unit min (1) 1. based on characterization not tested in production. typ max n cyc (2) cycling (erase / write) program memory t a = -40c to 105 c 10 -- kcycles cycling (erase / write) eeprom data memory 300 -- t ret (2) 2. characterization is done ac cording to jedec jesd22-a117. data retention (pro gram memory) after 10 kcycles at t a = 85 c t ret = +85 c 30 - - years data retention (eepr om data memory) after 300 kcycles at t a = 85 c 30 - - data retention (pro gram memory) after 10 kcycles at t a = 105 c t ret = +105 c 10 - - data retention (eepr om data memory) after 300 kcycles at t a = 105 c 10 - -
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 83/140 6.3.9 fsmc characteristics asynchronous waveforms and timings figure 17 through figure 20 represent asynchronous waveforms and ta b l e 3 7 through ta bl e 4 0 provide the corresponding timings. the results shown in these tables are obtained with the following fsmc configuration: addresssetuptime = 0 (addresssetuptime = 1, for asynchronous multiplexed modes) addressholdtime = 1 datasetuptime = 1 figure 17. asynchronous non-multiplexed sram/psram/nor read waveforms 1. mode 2/b, c and d only. in mode 1, fsmc_nadv is not used. data fsmc_ne fsmc_nbl[1:0] fsmc_d[15:0] t v(bl_ne) t h(data_ne) fsmc_noe address fsmc_a[25:0] t v(a_ne) fsmc_nwe t su(data_ne) t w(ne) ms18586v1 w(noe) t t v(noe_ne) t h(ne_noe) t h(data_noe) t h(a_noe) t h(bl_noe) t su(data_noe) fsmc_nadv (1) t v(nadv_ne) t w(nadv)
electrical characteristics STM32L151XD stm32l152xd 84/140 doc id 022027 rev 6 figure 18. asynchronous non-multiplexed sram/psram/nor write waveforms 1. mode 2/b, c and d only. in mode 1, fsmc_nadv is not used. table 37. asynchronous non-multiplexed sram/psram/nor read timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(ne) fsmc_ne low time t hclk -2 t hclk ns t v(noe_ne) fsmc_nex low to fsmc_noe low 0 2 ns t w(noe) fsmc_noe low time t hclk t hclk - 1 ns t h(ne_noe) fsmc_noe high to fsmc_ne high hold time 0 - ns t v(a_ne) fsmc_nex low to fsmc_a valid - 4 ns t h(a_noe) address hold time after fsmc_noe high t hclk + 1.5 - ns t v(bl_ne) fsmc_nex low to fsmc_bl valid - 0.5 ns t h(bl_noe) fsmc_bl hold time after fsmc_noe high 2*t hclk - 0.5 - ns t su(data_ne) data to fsmc_nex high setup time t hclk -ns t su(data_noe) data to fsmc_noex high setup time t hclk -ns t h(data_noe) data hold time after fsmc_noe high 0 - ns t h(data_ne) data hold time after fsmc_nex high 0 - ns t v(nadv_ne) fsmc_nex low to fsmc_nadv low - 2 ns t w(nadv) fsmc_nadv low time - t hclk ns nbl data fsmc_nex fsmc_nbl[1:0] fsmc_d[15:0] t v(bl_ne) t h(data_nwe) fsmc_noe address fsmc_a[25:0] t v(a_ne) t w(nwe) fsmc_nwe t v(nwe_ne) t h(ne_nwe) t h(a_nwe) t h(bl_nwe) t v(data_ne) t w(ne) ai14990 fsmc_nadv (1) t v(nadv_ne) t w(nadv)
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 85/140 figure 19. asynchronous multiplexed psram/nor read waveforms table 38. asynchronous non-multiplexed sram/psram/nor write timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(ne) fsmc_ne low time 2*t hclk -3 2*t hclk +2 ns t v(nwe_ne) fsmc_nex low to fsmc_nwe low 0.5 1 ns t w(nwe) fsmc_nwe low time t hclk - 2 t hclk + 3 ns t h(ne_nwe) fsmc_nwe high to fsmc_ne high hold time t hclk - 2.5 - ns t v(a_ne) fsmc_nex low to fsmc_a valid - 0 ns t h(a_nwe) address hold time after fsmc_nwe high t hclk - 2.5 - ns t v(bl_ne) fsmc_nex low to fsmc_bl valid - 0 ns t h(bl_nwe) fsmc_bl hold time after fsmc_nwe high t hclk - 4 - ns t v(data_ne) fsmc_nex low to data valid - t hclk ns t h(data_nwe) data hold time afte r fsmc_nwe high t hclk - 2.5 - ns nbl data fsmc_nbl[1:0] fsmc_ ad[15:0] t v(bl_ne) t h(data_ne) address fsmc_a[25:16] t v(a_ne) fsmc_nwe t v(a_ne) ai14892b address fsmc_nadv t v(nadv_ne) t w(nadv) t su(data_ne) t h(ad_nadv) fsmc_ne fsmc_noe t w(ne) t w(noe) t v(noe_ne) t h(ne_noe) t h(a_noe) t h(bl_noe) t su(data_noe) t h(data_noe)
electrical characteristics STM32L151XD stm32l152xd 86/140 doc id 022027 rev 6 figure 20. asynchronous multiplexed psram/nor write waveforms table 39. asynchronous multiplexed psram/nor read timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(ne) fsmc_ne low time 3*t hclk - 1.5 3*t hclk + 1 ns t v(noe_ne) fsmc_nex low to fsmc_noe low 2*t hclk - 1 2*t hclk ns t w(noe) fsmc_noe low time t hclk - 0.5 t hclk + 0.5 ns t h(ne_noe) fsmc_noe high to fsmc_ne high hold time 0 - ns t v(a_ne) fsmc_nex low to fsmc_a valid - 5 ns t v(nadv_ne) fsmc_nex low to fsmc_nadv low 1.5 2 ns t w(nadv) fsmc_nadv low time t hclk - 0.5 t hclk ns t h(ad_nadv) fsmc_ad(address) valid hold time after fsmc_nadv high t hclk - 6 - ns t h(a_noe) address hold time after fsmc_noe high 2*t hclk - 1 - ns t h(bl_noe) fsmc_bl time after fsmc_noe high 1.5 - ns t v(bl_ne) fsmc_nex low to fsmc_bl valid - 0 ns t su(data_ne) data to fsmc_nex high setup time t hclk -ns t su(data_noe) data to fsmc_noe high setup time t hclk -ns t h(data_ne) data hold time after fsmc_nex high 0 - ns t h(data_noe) data hold time after fsmc_noe high 0 - ns nbl data fsmc_nex fsmc_nbl[1:0] fsmc_ ad[15:0] t v(bl_ne) t h(data_nwe) fsmc_noe address fsmc_a[25:16] t v(a_ne) t w(nwe) fsmc_nwe t v(nwe_ne) t h(ne_nwe) t h(a_nwe) t h(bl_nwe) t v(a_ne) t w(ne) ai14891b address fsmc_nadv t v(nadv_ne) t w(nadv) t v(data_nadv) t h(ad_nadv)
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 87/140 table 40. asynchronous multiplexed psram/nor write timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(ne) fsmc_ne low time 4*t hclk - 3 4*t hclk + 2 ns t v(nwe_ne) fsmc_nex low to fsmc_nwe low t hclk t hclk + 1 ns t w(nwe) fsmc_nwe low time 2*t hclk - 2 2*t hclk + 4 ns t h(ne_nwe) fsmc_nwe high to fsmc_ne high hold time t hclk - 2.5 - ns t v(a_ne) fsmc_nex low to fsmc_a valid - 6 ns t v(nadv_ne) fsmc_nex low to fsmc_nadv low 1.5 2 ns t w(nadv) fsmc_nadv low time t hclk - 4 t hclk + 4 ns t h(ad_nadv) fsmc_ad (address) valid hold time after fsmc_nadv high t hclk - 5 - ns t h(a_nwe) address hold time af ter fsmc_nwe high t hclk - 2.5 - ns t h(bl_nwe) fsmc_bl hold time after fsmc_nwe high t hclk - 3 - ns t v(bl_ne) fsmc_nex low to fsmc_bl valid - 0.5 ns t v(data_nadv) fsmc_nadv high to data valid - t hclk + 6 ns t h(data_nwe) data hold time after fsmc_nwe high t hclk - 2.5 - ns
electrical characteristics STM32L151XD stm32l152xd 88/140 doc id 022027 rev 6 synchronous waveforms and timings figure 21 through figure 24 represent synchronous waveforms and ta bl e 4 2 through ta bl e 4 4 provide the corresponding timings. the results shown in these tables are obtained with the following fsmc configuration: burstaccessmode = fsmc_burstaccessmode_enable; memorytype = fsmc_memorytype_cram; writeburst = fsmc_writeburst_enable; clkdivision = 1; datalatency = 1 for nor flash; datalatency = 0 for psram figure 21. synchronous multiplexed nor/psram read timings fsmc_clk fsmc_nex fsmc_nadv fsmc_a[25:16] fsmc_noe fsmc_ad[15:0] ad[15:0] d1 d2 fsmc_nwait (waitcfg = 1b, waitpol + 0b) fsmc_nwait (waitcfg = 0b, waitpol + 0b) t w(clk) t w(clk) data latency = 0 busturn = 0 t d(clkl-nexl) t d(clkl-nexh) t d(clkl-nadvl) t d(clkl-av) t d(clkl-nadvh) t d(clkl-aiv) t d(clkl-noel) t d(clkl-noeh) t d(clkl-adv) t d(clkl-adiv) t su(adv-clkh) t h(clkh-adv) t su(adv-clkh) t h(clkh-adv) t su(nwaitv-clkh) t h(clkh-nwaitv) t su(nwaitv-clkh) t h(clkh-nwaitv) t su(nwaitv-clkh) t h(clkh-nwaitv) ai14893g
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 89/140 table 41. synchronous multiplexed nor/psram read timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(clk) fsmc_clk period 2*t hclk - 0.5 - ns t d(clkl-nexl) fsmc_clk low to fsmc_nex low (x = 0...2) - 0 ns t d(clkl-nexh) fsmc_clk low to fsmc_nex high (x = 0...2) t hclk + 1.5 - ns t d(clkl-nadvl) fsmc_clk low to fsmc_nadv low - 3 ns t d(clkl-nadvh) fsmc_clk low to fsmc_nadv high 3.5 - ns t d(clkl-av) fsmc_clk low to fsmc_ax valid (x = 16...25) - 0 ns t d(clkl-aiv) fsmc_clk low to fsmc_ax invalid (x = 16...25) 0 - ns t d(clkl-noel) fsmc_clk low to fsmc_noe low - t hclk - 1 ns t d(clkl-noeh) fsmc_clk low to fsmc_noe high 2.5 - ns t d(clkl-adv) fsmc_clk low to fsmc _ad[15:0] valid - 4 ns t d(clkl-adiv) fsmc_clk low to fsmc_ad[15:0] invalid 0 - ns t su(adv-clkh) fsmc_a/d[15:0] valid data before fsmc_clk high 6 - ns t h(clkh-adv) fsmc_a/d[15:0] valid data after fsmc_clk high 4 - ns t su(nwaitv-clkh) fsmc_nwait valid before fsmc_clk high tbd - ns t h(clkh-nwaitv) fsmc_nwait valid after fsmc_clk high tbd - ns
electrical characteristics STM32L151XD stm32l152xd 90/140 doc id 022027 rev 6 figure 22. synchronous multiplexed psram write timings fsmc_clk fsmc_nex fsmc_nadv fsmc_a[25:16] fsmc_nwe fsmc_ad[15:0] ad[15:0] d1 d2 fsmc_nwait (waitcfg = 0b, waitpol + 0b) t w(clk) t w(clk) data latency = 0 busturn = 0 t d(clkl-nexl) t d(clkl-nexh) t d(clkl-nadvl) t d(clkl-av) t d(clkl-nadvh) t d(clkl-aiv) t d(clkl-nweh) t d(clkl-nwel) t d(clkl-nblh) t d(clkl-adv) t d(clkl-adiv) t d(clkl-data) t su(nwaitv-clkh) t h(clkh-nwaitv) ai14992f t d(clkl-data) fsmc_nbl
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 91/140 table 42. synchronous multiplexed psram write timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(clk) fsmc_clk period 2*t hclk - ns t d(clkl-nexl) fsmc_clk low to fsmc_nex low (x = 0...2) - 0 ns t d(clkl-nexh) fsmc_clk low to fsmc_nex high (x = 0...2) 0 - ns t d(clkl-nadvl) fsmc_clk low to fsmc_nadv low - 0 ns t d(clkl-nadvh) fsmc_clk low to fsmc_nadv high 0 - ns t d(clkl-av) fsmc_clk low to fsmc_ax valid (x = 16...25) - 0 ns t d(clkl-aiv) fsmc_clk low to fsmc_ax invalid (x = 16...25) t hclk + 4 - ns t d(clkl-nwel) fsmc_clk low to fsmc_nwe low - 0 ns t d(clkl-nweh) fsmc_clk low to fsmc_nwe high 1 - ns t d(clkl-adiv) fsmc_clk low to fsmc_ad[15:0] invalid 5 - ns t d(clkl-data) fsmc_a/d[15:0] valid after fsmc_clk low - 6 ns t su(nwaitv-clkh) fsmc_nwait valid before fsmc_clk high tbd - ns t h(clkh-nwaitv) fsmc_nwait valid after fsmc_clk high tbd - ns t d(clkl-nblh) fsmc_clk low to fsmc_nbl high 1 - ns
electrical characteristics STM32L151XD stm32l152xd 92/140 doc id 022027 rev 6 figure 23. synchronous non-multiplexed nor/psram read timings table 43. synchronous non-multiplexed nor/psram read timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(clk) fsmc_clk period 2*t hclk - 0.5 - ns t d(clkl-nexl) fsmc_clk low to fsmc_nex low (x = 0...2) - 0 ns t d(clkl-nexh) fsmc_clk low to fsmc_nex high (x = 0...2) 0 - ns t d(clkl-nadvl) fsmc_clk low to fsmc_nadv low - 3 ns t d(clkl-nadvh) fsmc_clk low to fsmc_nadv high 3.5 - ns t d(clkl-av) fsmc_clk low to fsmc_ax valid (x = 16...25) - 0 ns t d(clkl-aiv) fsmc_clk low to fsmc_ax invalid (x = 16...25) 0 - ns t d(clkl-noel) fsmc_clk low to fsmc_noe low - t hclk + 1 ns t d(clkl-noeh) fsmc_clk low to fsmc_noe high 2.5 - ns t su(dv-clkh) fsmc_d[15:0] valid data bef ore fsmc_clk high 4 - ns t h(clkh-dv) fsmc_d[15:0] valid data after fsmc_clk high 4 - ns t su(nwaitv-clkh) fsmc_nwait valid before fsmc_clk high tbd - ns t h(clkh-nwaitv) fsmc_nwait valid after fsmc_clk high tbd - ns fsmc_clk fsmc_nex fsmc_a[25:0] fsmc_noe fsmc_d[15:0] d1 d2 fsmc_nwait (waitcfg = 1b, waitpol + 0b) fsmc_nwait (waitcfg = 0b, waitpol + 0b) t w(clk) t w(clk) data latency = 0 busturn = 0 t d(clkl-nexl) t d(clkl-nexh) t d(clkl-av) t d(clkl-aiv) t d(clkl-noel) t d(clkl-noeh) t su(dv-clkh) t h(clkh-dv) t su(dv-clkh) t h(clkh-dv) t su(nwaitv-clkh) t h(clkh-nwaitv) t su(nwaitv-clkh) t h(clkh-nwaitv) t su(nwaitv-clkh) t h(clkh-nwaitv) ai14894f fsmc_nadv t d(clkl-nadvl) t d(clkl-nadvh)
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 93/140 figure 24. synchronous non-multiplexed psram write timings table 44. synchronous non-multiplexed psram write timings (1) 1. c l = 30 pf. symbol parameter min max unit t w(clk) fsmc_clk period 2*t hclk -3 - ns t d(clkl-nexl) fsmc_clk low to fsmc_nex low (x = 0...2) - 0 ns t d(clkl-nexh) fsmc_clk low to fsmc_nex high (x = 0...2) 1 - ns t d(clkl-nadvl) fsmc_clk low to fsmc_nadv low - 5 ns t d(clkl-nadvh) fsmc_clk low to fsmc_nadv high 7 - ns t d(clkl-av) fsmc_clk low to fsmc_ax valid (x = 16...25) - 0 ns t d(clkl-aiv) fsmc_clk low to fsmc_ax invalid (x = 16...25) t hclk + 4 - ns t d(clkl-nwel) fsmc_clk low to fsmc_nwe low - 2 ns t d(clkl-nweh) fsmc_clk low to fsmc_nwe high 5 - ns t d(clkl-data) fsmc_d[15:0] valid data after fsmc_clk low - 7 ns t d(clkl-nblh) fsmc_clk low to fsmc_nbl high 3 - ns t su(nwaitv-clkh) fsmc_nwait valid before fsmc_clk high tbd - ns t h(clkh-nwaitv) fsmc_nwait valid after fsmc_clk high tbd - ns fsmc_clk fsmc_nex fsmc_a[25:0] fsmc_nwe fsmc_d[15:0] d1 d2 fsmc_nwait (waitcfg = 0b, waitpol + 0b) t w(clk) t w(clk) data latency = 0 busturn = 0 t d(clkl-nexl) t d(clkl-nexh) t d(clkl-av) t d(clkl-aiv) t d(clkl-nweh) t d(clkl-nwel) t d(clkl-data) t su(nwaitv-clkh) t h(clkh-nwaitv) ai14993g fsmc_nadv t d(clkl-nadvl) t d(clkl-nadvh) t d(clkl-data) fsmc_nbl t d(clkl-nblh)
electrical characteristics STM32L151XD stm32l152xd 94/140 doc id 022027 rev 6 6.3.10 emc characteristics susceptibility tests ar e performed on a sample basis during device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on the device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure occurs. the failure is indicated by the leds: electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a functional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in ta b l e 4 5 . they are based on the ems levels and classes defined in application note an1709. designing hardened software to avoid noise problems emc characterization and optimization are performed at component level with a typical application environment and simplified mcu software. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in relation with the emc level requested for his application. software recommendations the software flowchart must include the management of runaway conditions such as: corrupted program counter unexpected reset critical data corruption (control registers...) table 45. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-4 4a
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 95/140 prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the nrst pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applied directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o ports). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. 6.3.11 absolute maximum rati ngs (electrical sensitivity) based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determine its perfor mance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. table 46. emi characteristics symbol parameter conditions monitored frequency band max vs. frequency range unit 4 mhz voltage range 3 16 mhz voltage range 2 32 mhz voltage range 1 s emi peak level v dd = 3.3 v, t a = 25 c, lqfp100 package compliant with iec 61967-2 0.1 to 30 mhz 3 -6 -5 dbv 30 to 130 mhz 18 4 -7 130 mhz to 1ghz 15 5 -7 sae emi level 2.5 2 1 - table 47. esd absolute maximum ratings symbol ratings conditions class maximum value (1) 1. based on characterization results, not tested in production. unit v esd(hbm) electrostatic discharge voltage (human body model) t a = +25 c, conforming to jesd22-a114 22000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a = +25 c, conforming to jesd22-c101 ii 500
electrical characteristics STM32L151XD stm32l152xd 96/140 doc id 022027 rev 6 static latch-up two complementary static tests are required on six parts to assess the latch-up performance: a supply overvoltage is applied to each power supply pin a current injection is applied to each input, output and configurable i/o pin these tests are compliant with eia/jesd 78a ic latch-up standard. 6.3.12 i/o current in jection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v dd (for standard pins) should be avoided during normal product operation. however, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection acci dentally happens, susc eptibility tests are pe rformed on a sample basis during device characterization. functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode. while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, lcd levels, etc.). the test results are give n in the following table. table 48. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +105 c conforming to jesd78a ii level a table 49. i/o current injection susceptibility symbol description functional su sceptibility unit negative injection positive injection i inj injected current on true open-drain pins -5 +0 ma injected current on all 5 v tolerant (ft) pins -5 +0 injected current on any other pin -5 +5
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 97/140 6.3.13 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in ta bl e 5 0 are derived from tests performed under the conditions summarized in ta b l e 1 4 . all i/os are cmos and ttl compliant. table 50. i/o static characteristics symbol parameter conditions min typ max unit v il input low level voltage ttl ports 2.7 v v dd 3.6 v v ss - 0.3 - 0.8 v v ih standard i/o input high level voltage 2 (1) -v dd +0.3 ft (2) i/o input high level voltage - 5.5v v il input low level voltage cmos ports 1.65 v v dd 3.6 v ?0.3 - 0.3v dd (3) v ih standard i/o input high level voltage cmos ports 1.65 v v dd 3.6 v 0.7 v dd (3)(4) -v dd +0.3 ft (5) i/o input high level voltage cmos ports 1.65 v v dd 2.0 v -5.25 cmos ports 2.0 v v dd 3.6 v -5.5 v hys standard i/o schmitt trigger voltage hysteresis (6) 10% v dd (7) -- i lkg input leakage current (8)(3) v ss v in v dd i/os with lcd --50 na v ss v in v dd i/os with analog switches --50 v ss v in v dd i/os with analog switches and lcd --50 v ss v in v dd i/os with usb --tbd v ss v in v dd standard i/os --50 r pu weak pull-up equivalent resistor (9)(3) v in = v ss 30 45 60 k r pd weak pull-down equivalent resistor (9)(3) v in = v dd 30 45 60 k c io i/o pin capacitance - 5 - pf 1. guaranteed by design. 2. ft = 5v tolerant. to sustain a voltage higher than v dd +0.5 the internal pull-up/pull- down resistors must be disabled. 3. tested in production 4. 0.7v dd for 5v-tolerant receiver 5. ft = five-volt tolerant. 6. hysteresis voltage between schmitt trigger switching levels. based on characteriza tion, not tested in production. 7. with a minimum of 200 mv. based on characterization, not tested in production.
electrical characteristics STM32L151XD stm32l152xd 98/140 doc id 022027 rev 6 output driving current the gpios (general purpose input/outputs) can sink or source up to 8 ma, and sink or source up to 20 ma with the non-standard v ol /v oh specifications given in ta b l e 5 1 . in the user application, the number of i/o pins which can drive current must be limited to respect the absolute maxi mum rating specified in section 6.2 : the sum of the currents sourced by all the i/os on v dd, plus the maximum run consumption of the mcu sourced on v dd, cannot exceed the absolute maximum rating i vdd (see ta bl e 1 2 ). the sum of the currents sunk by all the i/os on v ss plus the maximum run consumption of the mcu sunk on v ss cannot exceed the absolute maximum rating i vss (see ta b l e 1 2 ). output voltage levels unless otherwise specified, the parameters given in ta bl e 5 1 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 1 4 . all i/os are cmos and ttl compliant. 8. the max. value may be exceeded if negative current is injected on adjacent pins. 9. pull-up and pull-down resistor s are designed with a true resistance in seri es with a switchable pmos/nmos. this mos/nmos contribution to the series resistance is minimum (~10% order) . table 51. output voltage characteristics symbol parameter conditions min max unit v ol (1)(2) 1. the i io current sunk by the device must always res pect the absolute maximum rating specified in table 12 and the sum of i io (i/o ports and control pins) must not exceed i vss . 2. tested in production. output low level voltage for an i/o pin when 8 pins are sunk at same time i io = +8 ma 2.7 v < v dd < 3.6 v -0.4 v v oh (3)(2) 3. the i io current sourced by the device must always re spect the absolute maximum rating specified in table 12 and the sum of i io (i/o ports and control pins) must not exceed i vdd . output high level voltage for an i/o pin when 8 pins are sourced at same time 2.4 - v ol (1)(4) output low level voltage for an i/o pin when 8 pins are sunk at same time i io =+ 4 ma 1.65 v < v dd < 2.7 v -0.45 v oh (3)(4) output high level voltage for an i/o pin when 8 pins are sourced at same time v dd -0.45 - v ol (1)(4) 4. based on characterization data, not tested in production. output low level voltage for an i/o pin when 4 pins are sunk at same time i io = +20 ma 2.7 v < v dd < 3.6 v -1.3 v oh (3)(4) output high level voltage for an i/o pin when 4 pins are sourced at same time v dd -1.3 -
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 99/140 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 25 and ta bl e 5 2 , respectively. unless otherwise specified, the parameters given in ta bl e 5 2 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 1 4 . table 52. i/o ac characteristics (1) ospeedrx [1:0] bit value (1) symbol parameter conditions min max (2) unit 00 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 400 khz c l = 50 pf, v dd = 1.65 v to 2.7 v - 400 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 625 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 625 01 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 2 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 1 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 125 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 250 10 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 10 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 2 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 25 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 125 11 f max(io)out maximum frequency (3) c l = 30 pf, v dd = 2.7 v to 3.6 v - 50 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 8 t f(io)out t r(io)out output rise and fall time c l = 30 pf, v dd = 2.7 v to 3.6 v - 5 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 30 -t extipw pulse width of external signals detected by the exti controller 8- 1. the i/o speed is configured using t he ospeedrx[1:0] bits. refer to the stm32l151xx, stm32l152xx and stm32l162xx reference manual for a description of gpio port configuration register. 2. guaranteed by design. not tested in production. 3. the maximum frequency is defined in figure 25 .
electrical characteristics STM32L151XD stm32l152xd 100/140 doc id 022027 rev 6 figure 25. i/o ac characteristics definition 6.3.14 nrst pin characteristics the nrst pin input driver uses cmos technology. unless otherwise specified, the parameters given in ta bl e 5 3 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 1 4 . ai14131 10% 90% 50% t r(io)out external output on 50pf maximum frequency is achieved if (t r + t f ) ? 2/3)t and if the duty cycle is (45-55%) 10 % 50% 90% when loaded by 50 pf t t r(io)out table 53. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) (1) 1. guaranteed by design, not tested in production. nrst input low level voltage v ss -0.8 v v ih(nrst) (1) nrst input high level voltage 1.4 - v dd v ol(nrst) (1) nrst output low level voltage i ol = 2 ma 2.7 v < v dd < 3.6 v -- 0.4 i ol = 1.5 ma 1.65 v < v dd < 2.7 v -- v hys(nrst) (1) nrst schmitt trigger voltage hysteresis 10%v dd (2) 2. 200 mv minimum value --mv r pu weak pull-up equivalent resistor (3) 3. the pull-up is designed with a true resistance in series with a switchable pmos. this pmos contribution to the series resistance is around 10%. v in = v ss 30 45 60 k v f(nrst) (1) nrst input filtered pulse - - 50 ns v nf(nrst) (1) nrst input not filtered pulse 350 - - ns
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 101/140 figure 26. recommended nrst pin protection 1. the reset network protects t he device against par asitic resets. 2. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 53 . otherwise the reset will not be taken into account by the device. 6.3.15 tim time r characteristics the parameters given in the following table are guaranteed by design. refer to section 6.3.12: i/o current injection characteristics for details on the input/output alternate function characteristics (output co mpare, input capture, external clock, pwm output). ai17854 stm32l15xxx r pu nrst (2) v dd filter internal reset 0.1 f external reset circuit (1) table 54. timx (1) characteristics 1. timx is used as a general term to refer to the tim2, tim3 and tim4 timers. symbol parameter conditions min max unit t res(tim) timer resolution time 1- t timxclk f timxclk = 32 mhz 31.25 - ns f ext timer external clock frequency on ch1 to ch4 0 f timxclk /2 mhz f timxclk = 32 mhz 0 16 mhz res tim timer resolution 16 bit t counter 16-bit counter clock period when internal clock is selected (timer?s prescaler disabled) 1 65536 t timxclk f timxclk = 32 mhz 0.0312 2048 s t max_count maximum possible count - 65536 65536 t timxclk f timxclk = 32 mhz - 134.2 s
electrical characteristics STM32L151XD stm32l152xd 102/140 doc id 022027 rev 6 6.3.16 communications interfaces i 2 c interface characteristics unless otherwise specified, the parameters given in ta bl e 5 5 are derived from tests performed under ambient temperature, f pclk1 frequency and v dd supply voltage conditions summarized in ta b l e 1 4 . the STM32L151XD and stm32l152xd product line i 2 c interface meets the requirements of the standard i 2 c communication protocol with the following restrictions: sda and scl are not ?true? open-drain i/o pins. when configured as open-drain, the pmos connected between the i/o pin and v dd is disabled, but is still present. the i 2 c characteristics are described in ta b l e 5 5 . refer also to section 6.3.12: i/o current injection characteristics for more details on the input/output alternate function characteristics (sda and scl) . table 55. i 2 c characteristics symbol parameter standard mode i 2 c (1) 1. guaranteed by design, not tested in production. fast mode i 2 c (1) (2) 2. f pclk1 must be at least 2 mhz to achieve standard mode i 2 c frequencies. it must be at least 4 mhz to achieve fast mode i2c frequencies. it must be a multiple of 10 mhz to reach the 400 khz maximum i2c fast mode clock. unit min max min max t w(scll) scl clock low time 4.7 - 1.3 - s t w(sclh) scl clock high time 4.0 - 0.6 - t su(sda) sda setup time 250 - 100 - ns t h(sda) sda data hold time 0 - 0 900 (3) 3. the maximum data hold time has only to be met if t he interface does not stretch the low period of scl signal. t r(sda) t r(scl) sda and scl rise time - 1000 20 + 0.1c b 300 t f(sda) t f(scl) sda and scl fall time - 300 - 300 t h(sta) start condition hold time 4.0 - 0.6 - s t su(sta) repeated start condition setup time 4.7 - 0.6 - t su(sto) stop condition setup time 4.0 - 0.6 - s t w(sto:sta) stop to start condition time (bus free) 4.7 - 1.3 - s c b capacitive load for each bus line - 400 - 400 pf
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 103/140 figure 27. i 2 c bus ac waveforms and measurement circuit 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd . table 56. scl frequency (f pclk1 = 32 mhz, v dd = 3.3 v) (1)(2) 1. r p = external pull-up resistance, f scl = i 2 c speed. 2. for speeds around 200 khz, the tole rance on the achieved speed is of 5%. for other speed ranges, the tolerance on the achieved speed is 2%. these variations depend on the accuracy of the external components used to design the application. f scl (khz) i2c_ccr value r p = 4.7 k 400 0x801b 300 0x8024 200 0x8035 100 0x00a0 50 0x0140 20 0x0320 ai17855 start sd a 100  4.7k  i 2 c bus 4.7k  100  v dd v dd stm32l15xxx sda scl t f(sda) t r(sda) scl t h(sta) t w(sckh) t w(sckl) t su(sda) t r(sck) t f(sck) t h(sda) s tart repeated start t su(sta) t su(sto) stop t su(sta:sto)
electrical characteristics STM32L151XD stm32l152xd 104/140 doc id 022027 rev 6 spi characteristics unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f pclkx frequency and v dd supply voltage conditions summarized in ta bl e 1 4 . refer to section 6.3.12: i/o current injection characteristics for more details on the input/output alternate function characteristics (nss, sck, mosi, miso). table 57. spi characteristics (1) symbol parameter conditions min max (2) unit f sck 1/t c(sck) spi clock frequency master mode - 16 mhz slave mode - 16 slave transmitter - 12 (3) t r(sck) (2) t f(sck) (2) spi clock rise and fall time capacitive load: c = 30 pf - 6 ns ducy(sck) spi slave input cloc k duty cycle slave mode 30 70 % t su(nss) nss setup time slave mode 4t hclk - ns t h(nss) nss hold time slave mode 2t hclk - t w(sckh) (2) t w(sckl) (2) sck high and low time master mode t sck /2 ? 5t sck /2+3 t su(mi) (2) data input setup time master mode 5 - t su(si) (2) slave mode 6 - t h(mi) (2) data input hold time master mode 5 - t h(si) (2) slave mode 5 - t a(so) (4) data output access time slave mode 0 3t hclk t v(so) (2) data output valid time slave mode - 33 t v(mo) (2) data output valid time master mode - 6.5 t h(so) (2) data output hold time slave mode 17 - t h(mo) (2) master mode 0.5 - 1. the characteristics above are given for voltage range 1. 2. based on characterization, not tested in production. 3. the maximum spi clock frequency in slave transmitter mode is given for an spi slave input clock duty cycle (ducy(sck)) ranging between 40 to 60%. 4. min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 105/140 figure 28. spi timing diagram - slave mode and cpha = 0 figure 29. spi timing diagram - slave mode and cpha = 1 (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd . ai14134c sck input cpha= 0 mosi input miso out p ut cpha= 0 ms b o u t msb in bi t6 ou t lsb in lsb out cpol=0 cpol=1 bit1 in nss input t su(nss) t c(sck) t h(nss) t a(so) t w(sckh) t w(sckl) t v(so) t h(so) t r(sck) t f(sck) t dis(so) t su(si) t h(si) ai14135 sck input cpha=1 mosi input miso out p ut cpha=1 ms b o u t msb in bi t6 ou t lsb in lsb out cpol=0 cpol=1 bit1 in t su(nss) t c(sck) t h(nss) t a(so) t w(sckh) t w(sckl) t v(so) t h(so) t r(sck) t f(sck) t dis(so) t su(si) t h(si) nss input
electrical characteristics STM32L151XD stm32l152xd 106/140 doc id 022027 rev 6 figure 30. spi timing diagram - master mode (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd . ai14136 sck input cpha= 0 mosi output miso inp ut cpha= 0 ms bin m sb out bi t6 in lsb out lsb in cpol=0 cpol=1 b i t1 out nss input t c(sck) t w(sckh) t w(sckl) t r(sck) t f(sck) t h(mi) high sck input cpha=1 cpha=1 cpol=0 cpol=1 t su(mi) t v(mo) t h(mo)
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 107/140 6.3.17 i2s characteristics note: refer to the i2s section of the product reference manual for more details about the sampling frequency (fs), f mck , f ck and d ck values. these values reflect only the digital peripheral behavior, source clock precision might slightly change them. dck depends mainly on the odd bit value, digital contribution leads to a min of (i2sdiv/(2*i2sdiv+odd) and a max of (i2sdiv+odd)/(2*i2sdiv+odd) . fs max is supported for each mode/condition. table 58. i2s characteristics symbol parameter conditions min max unit f mck i2s main clock output 256 x 8k 256xfs (1) 1. the maximum for 256xfs is 8 mhz mhz f ck i2s clock frequency master data: 32 bits - 64xfs mhz slave data: 32 bits - 64xfs d ck i2s clock frequency duty cycle slave receiver, 48khz 30 70 % t r(ck) i2s clock rise time capacitive load cl=30pf - 8 ns t f(ck) i2s clock fall time 8 t v(ws) ws valid time master mode 4 24 t h(ws) ws hold time master mode 0 - t su(ws) ws setup time slave mode 15 - t h(ws) ws hold time slave mode 0 - t su(sd_mr) data input setup time master receiver 8 - t su(sd_sr) data input setup time slave receiver 9 - t h(sd_mr) data input hold time master receiver 5 - t h(sd_sr) slave receiver 4 - t v(sd_st) data output valid time slave transmitter (after enable edge) -64 t h(sd_st) data output hold time slave transmitter (after enable edge) 22 - t v(sd_mt) data output valid time master transmitter (after enable edge) -12 t h(sd_mt) data output hold time master transmitter (after enable edge) 8-
electrical characteristics STM32L151XD stm32l152xd 108/140 doc id 022027 rev 6 figure 31. i 2 s slave timing diagram (philips protocol) (1) 1. measurement points are done at cmos levels: 0.3 v dd and 0.7 v dd . 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. figure 32. i 2 s master timing diagram (philips protocol) (1) 1. based on characterization, not tested in production. 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. ck inp u t cpol = 0 cpol = 1 t c(ck) w s inp u t s d tr a n s mit s d receive t w(ckh) t w(ckl) t su (w s ) t v( s d_ s t) t h( s d_ s t) t h(w s ) t su ( s d_ s r) t h( s d_ s r) m s b receive bitn receive l s b receive m s b tr a n s mit bitn tr a n s mit l s b tr a n s mit a i14 88 1 b l s b receive (2) l s b tr a n s mit (2) ck o u tp u t cpol = 0 cpol = 1 t c(ck) w s o u tp u t s d receive s d tr a n s mit t w(ckh) t w(ckl) t su ( s d_mr) t v( s d_mt) t h( s d_mt) t h(w s ) t h( s d_mr) m s b receive bitn receive l s b receive m s b tr a n s mit bitn tr a n s mit l s b tr a n s mit a i14 88 4 b t f(ck) t r(ck) t v(w s ) l s b receive (2) l s b tr a n s mit (2)
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 109/140 6.3.18 sdio characteristics figure 33. sdio timings table 59. sdio characteristics (1) 1. based on characterization , not tested in production. symbol parameter conditions min max unit f pp clock frequency in data transfer mode cl 30 pf 0 24 mhz t w(ckl) clock low time, f pp = 24 mhz cl 30 pf 20 (2) 2. values measured with a threshold level equal to v dd /2. - ns t w(ckh) clock high time, f pp = 24 mhz cl 30 pf 18 (2) - t r clock rise time, f pp = 24 mhz cl 30 pf - 5 t f clock fall time, f pp = 24 mhz cl 30 pf - 5 cmd, d inputs (referenced to ck) in sd default mode from 2.8 to 3.6 v t isu input setup time, f pp = 24 mhz cl 30 pf 2 - ns t ih input hold time, f pp = 24 mhz cl 30 pf 1.6 - cmd, d outputs (referenced to ck) in sd default mode t ovd output valid default time, f pp = 24 mhz cl 30 pf 0 14 ns t ohd output hold default time, f pp = 24 mhz cl 30 pf 0 - tw(ckh) ck d, cmd(output) d, cmd(input) tc tw(ckl) tovd tisu tih tf tr tohd ms31068v1
electrical characteristics STM32L151XD stm32l152xd 110/140 doc id 022027 rev 6 usb characteristics the usb interface is usb-if certified (full speed). figure 34. usb timings: definition of data signal rise and fall time table 60. usb startup time symbol parameter max unit t startup (1) 1. guaranteed by design, not tested in production. usb transceiver startup time 1 s table 61. usb dc electrical characteristics symbol parameter conditions min. (1) 1. all the voltages are measured from the local ground potential. max. (1) unit input levels v dd usb operating voltage 3.0 3.6 v v di (2) 2. guaranteed by characterizati on, not tested in production. differential input sensitivity i(usb_dp, usb_dm) 0.2 - v v cm (2) differential common mode range includes v di range 0.8 2.5 v se (2) single ended receiver threshold 1.3 2.0 output levels v ol (3) 3. tested in production. static output level low r l of 1.5 k to 3.6 v (4) 4. r l is the load connected on the usb drivers. -0.3 v v oh (3) static output level high r l of 15 k to v ss (4) 2.8 3.6 table 62. usb: full speed electrical characteristics driver characteristics (1) symbol parameter con ditions min max unit t r rise time (2) c l = 50 pf 420ns t f fall time (2) c l = 50 pf 4 20 ns t rfm rise/ fall time matching t r /t f 90 110 % v crs output signal crossover voltage 1.3 2.0 v ai14137 t f differen tial data l ines v ss v cr s t r crossover points
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 111/140 6.3.19 12-bit adc characteristics unless otherwise specified, the parameters given in ta bl e 6 4 are guaranteed by design. 1. guaranteed by design, not tested in production. 2. measured from 10% to 90% of the data signal. for more detailed informations, please refer to usb specification - chapt er 7 (version 2.0). table 63. adc clock frequency symbol parameter conditions min max unit f adc adc clock frequency voltage range 1 & 2 2.4 v v dda 3.6 v v ref+ = v dda 0.480 16 mhz v ref+ < v dda v ref+ > 2.4 v 8 v ref+ < v dda v ref+ 2.4 v 4 1.8 v v dda 2.4 v v ref+ = v dda 8 v ref+ < v dda 4 voltage range 3 4 table 64. adc characteristics symbol parameter conditions min typ max unit v dda power supply 1.8 - 3.6 v v ref+ positive reference voltage 2.4 v v dda 3.6 v v ref+ must be below or equal to v dda 1.8 (1) -v dda v ref- negative reference voltage - v ssa - i vdda current on the v dda input pin - 1000 1450 a i vref (2) current on the v ref input pin peak - 400 700 average - 450 v ain conversion voltage range (3) 0 (4) -v ref+ v f s 12-bit sampling rate direct channels 0.03 - 1 msps multiplexed channels 0.03 - 0.76 10-bit sampling rate direct channels 0.03 - 1.07 msps multiplexed channels 0.03 - 0.8 8-bit sampling rate direct channels 0.03 - 1.23 msps multiplexed channels 0.03 - 0.89 6-bit sampling rate direct channels 0.03 - 1.54 msps multiplexed channels 0.03 - 1
electrical characteristics STM32L151XD stm32l152xd 112/140 doc id 022027 rev 6 t s sampling time direct channels 2.4 v v dda 3.6 v 0.25 (5) -- s multiplexed channels 2.4 v v dda 3.6 v 0.56 (5) -- direct channels 1.8 v v dda 2.4 v 0.56 (5) -- multiplexed channels 1.8 v v dda 2.4 v 1 (5) -- 4-3841/f adc t conv total conversion time (including sampling time) f adc = 16 mhz 1 - 24.75 s 4 to 384 (sampling phase) +12 (successive approximation) 1/f adc c adc internal sample and hold capacitor direct channels - 16 - pf multiplexed channels - - f trig external trigger frequency regular sequencer 12-bit conversions - - tconv+1 1/f adc 6/8/10-bit conversions - - tconv 1/f adc f trig external trigger frequency injected sequencer 12-bit conversions - - tconv+2 1/f adc 6/8/10-bit conversions - - tconv+1 1/f adc r ain (6) external input impedance -- 50 k --0.5 t lat injection trigger conversion latency f adc = 16 mhz 219 - 281 ns 3.5 - 4.5 1/f adc t latr regular trigger conversion latency f adc = 16 mhz 156 - 219 ns 2.5 - 3.5 1/f adc t stab power-up time - - 3.5 s 1. the vref+ input can be grounded if neither the adc nor the dac are used (this allows to shut down an external voltage reference). 2. the current consumption through vref is composed of two parameters: - one constant (max 300 a) - one variable (max 400 a), only during sampling time + 2 first conversion pulses so, peak consumption is 300+400 = 700 a and average c onsumption is 300 + [(4 sampling + 2) /16] x 400 = 450 a at 1msps 3. v ref+ can be internally connected to v dda and v ref- can be internally connected to v ssa , depending on the package. refer to section 4: pin descriptions for further details. 4. v ssa or v ref- must be tied to ground. 5. minimum sampling and conversion time is reached for maximum rext = 0.5 k . 6. for 1 msps, maximum rext is 0.5 k . table 64. adc characte ristics (c ontinued) symbol parameter conditions min typ max unit
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 113/140 table 65. adc accuracy (1)(2) symbol parameter test conditions min (3) typ max (3) unit et total unadjusted error 2.4 v v dda 3.6 v 2.4 v v ref+ 3.6 v f adc = 8 mhz, r ain = 50 t a = -40 to 105 c -24 lsb eo offset error - 1 2 eg gain error - 1.5 3.5 ed differential linearity error - 1 2 el integral linearity error - 1.7 3 enob effective number of bits 2.4 v v dda 3.6 v v dda = v ref+ f adc = 16 mhz, r ain = 50 t a = -40 to 105 c 1 khz f input 100 khz 9.2 10 - bits sinad signal-to-noise and distortion ratio 57.5 62 - db snr signal-to-noise ratio 57.5 62 - thd total harmonic distortion -74 -75 - et total unadjusted error 2.4 v v dda 3.6 v 1.8 v v ref+ 2.4 v f adc = 4 mhz, r ain = 50 t a = -40 to 105 c -46.5 lsb eo offset error - 2 4 eg gain error - 4 6 ed differential linearity error - 1 2 el integral linearity error - 1.5 3 et total unadjusted error 1.8 v v dda 2.4 v 1.8 v v ref+ 2.4 v f adc = 4 mhz, r ain = 50 t a = -40 to 105 c -23 lsb eo offset error - 1 1.5 eg gain error - 1.5 2 ed differential linearity error - 1 2 el integral linearity error - 1 1.5 1. adc dc accuracy values are m easured after internal calibration. 2. adc accuracy vs. negative injection current: injecting a negativ e current on any analog input pins should be avoided as this significantly reduces the ac curacy of the conversion bei ng performed on another analog input. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. any positive injection current with in the limits specified for i inj(pin) and i inj(pin) in section 6.3.12 does not affect the adc accuracy. 3. based on characterization, not tested in production.
electrical characteristics STM32L151XD stm32l152xd 114/140 doc id 022027 rev 6 figure 35. adc accura cy characteristics figure 36. typical connection diagram using the adc 1. refer to ta b l e 6 4 for the values of r ain , r adc and c adc . 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced. e o e g 1lsb ideal (1) example of an actual transfer curve (2) the ideal transfer curve (3) end point correlation line e t =total unadjusted error: maximum deviation between the actual and the ideal transfer curves. e o =offset error: deviation between the first actual transition and the first ideal one. e g =gain error: deviation between the last ideal transition and the last actual one. e d =differential linearity error: maximum deviation between actual steps and the ideal one. e l =integral linearity error: maximum deviation between any actual transition and the end point correlation line. 4095 4094 4093 5 4 3 2 1 0 7 6 1234567 4093 4094 4095 4096 (1) (2) e t e d e l (3) v dda v ssa ai14395b v ref+ 4096 (or depending on package)] v dda 4096 [1lsb ideal = ai17856b stm32l15xxx v dd ainx i l 50 na 0.6 v v t r ain (1) c parasitic v ain 0.6 v v t r adc (1) 12-bit converter c adc (1) sample and hold adc converter
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 115/140 figure 37. maximum dynamic current consumption on v ref+ supply pin during adc conversion adc clock sampling (n cycles) conversion (12 cycles) i ref+ 300a 700a table 66. r ain max for f adc = 16 mhz (1) ts (cycles) ts (s) r ain max (k ) multiplexed channels direct channels 2.4 v < v dda < 3.6 v 1.8 v < v dda < 2.4 v 2.4 v < v dda < 3.3 v 1.8 v < v dda < 2.4 v 4 0.25 not allowed not allowed 0.7 not allowed 9 0.5625 0.8 not allowed 2.0 1.0 16 1 2.0 0.8 4.0 3.0 24 1.5 3.0 1.8 6.0 4.5 48 3 6.8 4.0 15.0 10.0 96 6 15.0 10.0 30.0 20.0 192 12 32.0 25.0 50.0 40.0 384 24 50.0 50.0 50.0 50.0 1. guaranteed by design, not tested in production.
electrical characteristics STM32L151XD stm32l152xd 116/140 doc id 022027 rev 6 general pcb design guidelines power supply decoupling should be performed as shown in figure 38 or figure 39 , depending on whether v ref+ is connected to v dda or not. the 10 nf capacitors should be ceramic (good quality). they should be placed as close as possible to the chip. figure 38. power supply and reference decoupling (v ref+ not connected to v dda ) 1. v ref+ and v ref? inputs are available only on 100-pin packages. figure 39. power supply and reference decoupling (v ref+ connected to v dda ) 1. v ref+ and v ref? inputs are available only on 100-pin packages. v ref+ (see note 1) stm32l15xxx v dda v ssa /v refC (see note 1) 1 f // 100 nf 1 f // 100 nf ai17857b v ref+ /v dda stm32l15xxx 1 f // 100 nf v refC /v ssa ai17858a (see note 1) (see note 1)
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 117/140 6.3.20 dac elect rical specifications data guaranteed by design, not tested in production, unless otherwise specified. table 67. dac characteristics symbol parameter conditions min typ max unit v dda analog supply voltage 1.8 - 3.6 v v ref+ reference supply voltage v ref+ must always be below v dda 1.8 - 3.6 v ref- lower reference voltage v ssa i ddvref+ (1) current consumption on v ref+ supply v ref+ = 3.3 v no load, middle code (0x800) - 130 220 a no load, worst code (0x000) - 220 350 i dda (1) current consumption on v dda supply v dda = 3.3 v no load, middle code (0x800) - 210 320 no load, worst code (0xf1c) - 320 520 r l (2) resistive load dac output buffer on 5- - k c l (2) capacitive load - - 50 pf r o output impedance dac output buffer off 6 8 10 k v dac_out voltage on dac_out output dac output buffer on 0.2 - v dda ? 0.2 v dac output buffer off 0.5 - v ref+ ? 1lsb mv dnl (1) differential non linearity (3) c l 50 pf, r l 5 k dac output buffer on -1.5 3 lsb no r load , c l 50 pf dac output buffer off -1.5 3 inl (1) integral non linearity (4) c l 50 pf, r l 5 k dac output buffer on -2 4 no r load , c l 50 pf dac output buffer off -2 4 offset (1) offset error at code 0x800 (5) c l 50 pf, r l 5 k dac output buffer on -10 25 no r load , c l 50 pf dac output buffer off -5 8 offset1 (1) offset error at code 0x001 (6) no r load , c l 50 pf dac output buffer off -1.5 5
electrical characteristics STM32L151XD stm32l152xd 118/140 doc id 022027 rev 6 doffset/dt (1) offset error temperature coefficient (code 0x800) v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer off -20 -10 0 v/c v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer on 020 50 gain (1) gain error (7) c l 50 pf, r l 5 k dac output buffer on - +0.1 / -0.2% +0.2 / -0.5% % no r load , c l 50 pf dac output buffer off - +0 / -0.2% +0 / -0.4% dgain/dt (1) gain error temperature coefficient v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer off -10 -2 0 v/c v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer on -40 -8 0 tue (1) total unadjusted error c l 50 pf, r l 5 k dac output buffer on -12 30 lsb no r load , c l 50 pf dac output buffer off -8 12 t settling settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till dac_out reaches final value 1lsb c l 50 pf, r l 5 k - 7 12 s update rate max frequency for a correct dac_out change (95% of final value) with 1 lsb variation in the input code c l 50 pf, r l 5 k -1msps t wakeup wakeup time from off state (setting the enx bit in the dac control register) (8) c l 50 pf, r l 5 k - 9 15 s psrr+ v dda supply rejection ratio (static dc measurement) c l 50 pf, r l 5 k - -60 -35 db 1. data based on characterization results. 2. connected between dac_out and v ssa . 3. difference between two consecutive codes - 1 lsb. 4. difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095. 5. difference between the value measured at code (0x800) and the ideal value = v ref+ /2. table 67. dac characteristics (continued) symbol parameter conditions min typ max unit
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 119/140 figure 40. 12-bit buffered /non-buffered dac 1. the dac integrates an output buffer that can be used to r educe the output impedance and to dr ive external loads directly without the use of an external operational amplifier. the buffer can be bypassed by configuring the boffx bit in the dac_cr register. 6.3.21 operational am plifier char acteristics 6. difference between the value measured at code (0x001) and the ideal value. 7. difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xfff when buffer is off, and from code giving 0.2 v and (v dda ? 0.2) v when buffer is on. 8. in buffered mode, the output can overshoot above the final value for low input code (starting from min value). r load c load b u ffered/non- bu ffered dac dac_outx b u ffer(1) 12- b it digit a l to a n a log converter a i17157v2 table 68. operational amplifier characteristics symbol parameter condition (1) min (2) typ max (2) unit cmir common mode input range 0 - v dd vi offset input offset voltage maximum calibration range -- 15 mv after offset calibration -- 1.5 vi offset input offset voltage drift normal mode - - 40 v/c low power mode - - 80 i ib input current bias dedicated input 75 c --1 na general purpose input --10 i load drive current normal mode - - 500 a low power mode - - 100 i dd consumption normal mode no load, quiescent mode - 100 220 a low power mode - 30 60 cmrr common mode rejection ration normal mode - -85 - db low power mode - -90 - psrr power supply rejection ratio normal mode dc --85- db low power mode - -90 -
electrical characteristics STM32L151XD stm32l152xd 120/140 doc id 022027 rev 6 gbw bandwidth normal mode v dd >2.4 v 400 1000 3000 khz low power mode 150 300 800 normal mode v dd <2.4 v 200 500 2200 low power mode 70 150 800 sr slew rate normal mode v dd >2.4 v (between 0.1 v and v dd -0.1 v) -700- v/ms low power mode v dd >2.4 v - 100 - normal mode v dd <2.4 v -300- low power mode - 50 - ao open loop gain normal mode 55 100 - db low power mode 65 110 - r load resistive load normal mode v dd <2.4 v 4-- k low power mode 20 - - c load capacitive load - - 50 pf voh sat high saturation voltage normal mode i load = max or r load = min v dd - 100 -- mv low power mode v dd -50 - - vol sat low saturation voltage normal mode - - 100 low power mode - - 50 ? m phase margin - 60 - gm gain margin - -12 - db t offtrim offset trim time: during calibration, minimum time needed between two steps to have 1 mv accuracy -1-ms t wakeup wakeup time normal mode c load 50 pf, r load 4 k -10- s low power mode c load 50 pf, r load 20 k -30- 1. operating conditions are li mited to junction temperature (0 c to 105 c) when v dd is below 2 v. otherwise, the operating temperature range is 105 c to -40 c. 2. data based on characterization results, not tested in production. table 68. operational amplifier characteristics (continued) symbol parameter condition (1) min (2) typ max (2) unit
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 121/140 6.3.22 temperature sen sor characteristics 6.3.23 comparator table 69. temperature sensor characteristics symbol parameter min typ max unit t l (1) 1. guaranteed by characterizati on, not tested in production. v sense linearity with temperature - 1 2c avg_slope (1) average slope 1.48 1.61 1.75 mv/c v 110 voltage at 110c 5c (2) 2. measured at v dd = 3 v 10 mv. v110 adc conversion result is stored in the tsense_cal2 byte. 612 626.8 641.5 mv i dda (temp) (3) current consumption - 3.4 6 a t start (3) 3. guaranteed by design, not tested in production. startup time - - 10 s t s_temp (4)(3) 4. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the temperature 10 - - table 70. comparator 1 characteristics symbol parameter conditions min (1) typ max (1) 1. based on characterization , not tested in production. unit v dda analog supply voltage 1.65 3.6 v r 400k r 400k value - 400 - k r 10k r 10k value - 10 - v in comparator 1 input voltage range 0.6 - v dda v t start comparator startup time - 7 10 s td propagation delay (2) 2. the delay is characterized for 100 mv input step wi th 10 mv overdrive on the inverting input, the non- inverting input set to the reference. -3 10 voffset comparator offset - 3 10 mv d voffset /dt comparator offset variation in worst voltage stress conditions v dda = 3.6 v v in+ = 0 v v in- = v refint t a = 25 c 0 1.5 10 mv/1000 h i comp1 current consumption (3) 3. comparator consumption only. inte rnal reference voltage not included. - 160 260 na
electrical characteristics STM32L151XD stm32l152xd 122/140 doc id 022027 rev 6 table 71. comparator 2 characteristics symbol parameter conditions min typ max (1) 1. based on characterization , not tested in production. unit v dda analog supply voltage 1.65 - 3.6 v v in comparator 2 input voltage range 0 - v dda v t start comparator startup time fast mode - 15 20 s slow mode - 20 25 t d slow propagation delay (2) in slow mode 2. the delay is characterized for 100 mv input step wi th 10 mv overdrive on the inverting input, the non- inverting input set to the reference. 1.65 v v dda 2.7 v - 1.8 3.5 2.7 v v dda 3.6 v - 2.5 6 t d fast propagation delay (2) in fast mode 1.65 v v dda 2.7 v - 0.8 2 2.7 v v dda 3.6 v - 1.2 4 v offset comparator offset error - 4 20 mv dthreshold/ dt threshold voltage temperature coefficient v dda = 3.3v t a = 0 to 50 c v- = v ref+ , 3/4 v ref+ , 1/2 v ref+ , 1/4 v ref+ . -15 30 ppm /c i comp2 current consumption (3) 3. comparator consumption only. inte rnal reference voltage (necessary for comparator operation) is not included. fast mode - 3.5 5 a slow mode - 0.5 2
STM32L151XD stm32l152xd electrical characteristics doc id 022027 rev 6 123/140 6.3.24 lcd control ler (stm32l152xd only) the stm32l152xd embeds a built-in step-up converter to provide a constant lcd reference voltage independently from the v dd voltage. an external capacitor c ext must be connected to the v lcd pin to decouple this converter. table 72. lcd controller characteristics symbol parameter min typ max unit v lcd lcd external voltage - - 3.6 v v lcd0 lcd internal reference voltage 0 - 2.6 - v lcd1 lcd internal reference voltage 1 - 2.73 - v lcd2 lcd internal reference voltage 2 - 2.86 - v lcd3 lcd internal reference voltage 3 - 2.98 - v lcd4 lcd internal reference voltage 4 - 3.12 - v lcd5 lcd internal reference voltage 5 - 3.26 - v lcd6 lcd internal reference voltage 6 - 3.4 - v lcd7 lcd internal reference voltage 7 - 3.55 - c ext v lcd external capacitance 0.1 2 f i lcd (1) 1. lcd enabled with 3 v internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no lcd connected. supply current at v dd = 2.2 v - 3.3 - a supply current at v dd = 3.0 v - 3.1 - r htot (2) 2. guaranteed by design, not tested in production. low drive resistive network overall value 5.28 6.6 7.92 m r l (2) high drive resistive network total value 192 240 288 k v 44 segment/common highest level voltage - - v lcd v v 34 segment/common 3/4 level voltage - 3/4 v lcd - v v 23 segment/common 2/3 level voltage - 2/3 v lcd - v 12 segment/common 1/2 level voltage - 1/2 v lcd - v 13 segment/common 1/3 level voltage - 1/3 v lcd - v 14 segment/common 1/4 level voltage - 1/4 v lcd - v 0 segment/common lowest level voltage 0 - - vxx (3) 3. based on characterization , not tested in production. segment/common level voltage error t a = -40 to 85 c -- 50 mv
package characteristics STM32L151XD stm32l152xd 124/140 doc id 022027 rev 6 7 package characteristics 7.1 package mechanical data in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark.
STM32L151XD stm32l152xd package characteristics doc id 022027 rev 6 125/140 figure 41. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package outline drawing is not to scale. d1 d3 d e1 e3 e e pin 1 identification 73 72 37 36 109 144 108 1 aa2a1 b c a1 l l1 k seating plane c ccc c 0.25 mm gage plane me_1a
package characteristics STM32L151XD stm32l152xd 126/140 doc id 022027 rev 6 figure 42. recommended footprint 1. dimensions are in millimeters. table 73. lqfp144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 d 21.800 22.000 22.200 0.8583 0.8661 0.8740 d1 19.800 20.000 20.200 0.7795 0.7874 0.7953 d3 17.500 0.6890 e 21.800 22.000 22.200 0.8583 0.8661 0.8740 e1 19.800 20.000 20.200 0.7795 0.7874 0.7953 e3 17.500 0.6890 e 0.500 0.0197 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 1.000 0.0394 k 03.57 03.57 ccc 0.080 0.0031 0.5 0.35 19.9 17.85 22.6 1.35 22.6 19.9 ai14905c 1 36 37 72 73 108 109 144
STM32L151XD stm32l152xd package characteristics doc id 022027 rev 6 127/140 figure 43. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package outline 1. drawing is not to scale. e identification pin 1 gauge plane 0.25 mm seating plane d d1 d3 e3 e1 e k ccc c c 1 25 26 100 76 75 51 50 1l_me_v3 a2 a a1 l1 l c b a1
package characteristics STM32L151XD stm32l152xd 128/140 doc id 022027 rev 6 figure 44. recommended footprint 1. dimensions are in millimeters. table 74. lqpf100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 d 15.800 16.000 16.200 0.6220 0.6299 0.6378 d1 13.800 14.000 14.200 0.5433 0.5512 0.5591 d3 12.000 0.4724 e 15.800 16.000 16.200 0.6220 0.6299 0.6378 e1 13.800 14.000 14.200 0.5433 0.5512 0.5591 e3 12.000 0.4724 e 0.500 0.0197 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 1.000 0.0394 k 0.0 3.5 7.0 0.0 3.5 7.0 ccc 0.080 0.0031 75 51 50 76 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906
STM32L151XD stm32l152xd package characteristics doc id 022027 rev 6 129/140 figure 45. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package outline 1. drawing is not to scale. a1 a2 a seating plane ccc c b c c a1 l l1 k gauge plane 0.25 mm identification pin 1 d d1 d3 e 1 16 17 32 33 48 49 64 e3 e1 e 5w_me_v2
package characteristics STM32L151XD stm32l152xd 130/140 doc id 022027 rev 6 figure 46. recommended footprint 1. dimensions are in millimeters. table 75. lqfp64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.400 1.350 1.450 0.0551 0.0531 0.0571 b 0.220 0.170 0.270 0.0087 0.0067 0.0106 c 0.090 0.200 0.0035 0.0079 d 12.000 11.800 12.200 0.4724 0.4646 0.4803 d1 10.000 9.800 10. 200 0.3937 0.3858 0.4016 d3 7.500 0.2953 e 12.000 11.800 12.200 0.4724 0.4646 0.4803 e1 10.000 9.800 10. 200 0.3937 0.3858 0.4016 e3 7.500 0.2953 e 0.500 0.0197 l 0.600 0.450 0.750 0.0236 0.0177 0.0295 l1 1.000 0.0394 ccc 0.080 0.0031 k 3.5 0.0 7.0 3.5 0.0 7.0 48 32 49 64 17 116 1.2 0.3 33 10.3 12.7 10.3 0.5 7.8 12.7 ai14909
STM32L151XD stm32l152xd package characteristics doc id 022027 rev 6 131/140 figure 47. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package outline 1. drawing is not to scale. table 76. ufbga132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 0.530 0.460 0.600 0.0209 0.0181 0.0236 a1 0.080 0.050 0.110 0.0031 0.0020 0.0043 a2 0.450 0.400 0.500 0.0177 0.0157 0.0197 a3 0.320 0.270 0.370 0.0126 0.0106 0.0146 b 0.280 0.170 0.330 0.0110 0.0067 0.0130 d 7.000 6.950 7.050 0.2756 0.2736 0.2776 e 7.000 6.950 7.050 0.2756 0.2736 0.2776 e 0.500 0.0197 f 0.750 0.700 0.800 0.0295 0.0276 0.0315 ddd 0.080 0.0031 eee 0.150 0.0059 fff 0.050 0.0020 a0g8_me_v1 seating plane a2 a1 e f f d m eee z y x fff ?b (132 balls) ? ? a m m e top view bottom view 1 12 e a a3 z y x z ddd z a1 ball identifier a1 ball index area
package characteristics STM32L151XD stm32l152xd 132/140 doc id 022027 rev 6 figure 48. wlcsp64, 0.400 mm pitch wafer level chip size package outline 1. drawing is not to scale. a1 bump eee detail a (rotated 90 ) seating plane b bump side e1 e1 e e g f a0jv_me side view detail a a a2 a1 corner wafer back side d e g f 1 8 a h
STM32L151XD stm32l152xd package characteristics doc id 022027 rev 6 133/140 table 77. wlcsp64, 0.400 mm pitch wafer level chip size package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 0.540 0.570 0.600 0.0205 0.0224 0.0244 a1 0.19 0.0067 0.0075 0.0083 a2 0.380 0.0138 0.0150 0.0161 b 0.240 0.270 0.300 0.0094 0.0106 0.0118 d 4.504 4.539 4.574 0.1779 0.1787 0.1795 e 4.876 4.911 4.946 0.1926 0.1933 0.1941 e 0.400 0.0157 e1 2.800 0.1102 f 0.870 0.0343 g 1.056 0.0416 eee 0.050 0.0020
package characteristics STM32L151XD stm32l152xd 134/140 doc id 022027 rev 6 7.2 thermal characteristics the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max ja ) where: t a max is the maximum ambient temperature in c, ja is the package junction-to-ambient thermal resistance, in c/w, p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), p int max is the product of i dd and v dd , expressed in watts. this is the maximum chip internal power. p i/o max represents the maximum powe r dissipation on output pins where: p i/o max = (v ol i ol ) + ((v dd ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. table 78. thermal characteristics symbol parameter value unit ja thermal resistance junction-ambient lqfp144 - 20 x 20 mm / 0.5 mm pitch 40 c/w thermal resistance junction-ambient ufbga132 - 7 x 7 mm 60 thermal resistance junction-ambient lqfp100 - 14 x 14 mm / 0.5 mm pitch 43 thermal resistance junction-ambient lqfp64 - 10 x 10 mm / 0.5 mm pitch 46 thermal resistance junction-ambient wlcsp64 - 0.400 mm pitch 46
STM32L151XD stm32l152xd package characteristics doc id 022027 rev 6 135/140 figure 49. thermal resistance 7.2.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). ava ilable from www.jedec.org. ms31407v1 temperature(c) pd (mw) 0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 100 75 50 25 0 lqfp64 10x10mm wlcsp64 ufbga132 7x7mm lqfp144 20x20 7x7mm 'pscjeefobsfb 5+5+nby
ordering information scheme STM32L151XD stm32l152xd 136/140 doc id 022027 rev 6 8 ordering information scheme for a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest st sales office. table 79. stm32l15xxd ordering information scheme example: stm32 l 151 r c t 6 d xxx device family stm32 = arm-based 32-bit microcontroller product type l = low power device subfamily 151: devices without lcd 152: devices with lcd pin count r = 64 pins v = 100 pins z = 144 pins q = 132 pins flash memory size d = 384 kbytes of flash memory package h = bga t = lqfp y = wlcsp64 temperature range 6 = industrial temperature range, ?40 to 85 c options no character = v dd range: 1.8 to 3.6 v and bor enabled d = v dd range: 1.65 to 3.6 v and bor disabled packing tr = tape and reel no character = tray or tube
STM32L151XD stm32l152xd revision history doc id 022027 rev 6 137/140 9 revision history table 80. document revision history date revision changes 03-oct-2011 1 initial release. 03-feb-2012 2 status of the document changed ( datasheet instead of preliminary data). updated low power features on page 1. removed references to devices with 256 kb of flash memory. gpiof replaced with gioph. added sdio in table 2: ultra-low-power stm32l15xxd device features and peripheral counts on page 11 and in table 10: alternate function input/output on page 43 (fsmc/sdio instead of fsmc). table 2: ultra-low-power stm32l15xxd device features and peripheral counts : replaced stm32l15xwx with stm32l15xqx. figure 1: ultra-low-power stm32l15xxd block diagram : updated legend. modified section 3.4: clock management on page 21 . table 4: stm32l15xqd ufbga132 ballout : replaced stm32l15xwc/d with stm32l15xqd. figure 5 , figure 5 , figure 6 : updated titles. table 9: stm32l15xxd pin definitions : updated title, updated pins pf0, pf1, ph2, pf12, pf13, pf14 , pf15, pg0, pg 1, pg12, pg15, pd0, and pd1. table 10: alternate function input/output : modified alternate function for pa13 and pa14; removed event out for ph2. figure 8: memory map : removed the text ?apb memory space?. modified figure 11: power supply scheme on page 54 . modified table 3: functionalities depending on the operating power supply range on page 16 . table 18: current consumption in run mode, code with data processing running from ram : added footnote 3 . table 19: current consumption in sleep mode : updated condition for f hse ; added footnote 3 . table 23: typical and maximum current consumptions in standby mode : modified max values. table 61: usb dc electrical characteristics : removed two footnotes. modified table 35: flash memory and data eeprom characteristics on page 82 . table 78: thermal characteristics : updated ?tbds? with values. modified tables in section 6.3.4: supply current characteristics on page 60 .
revision history STM32L151XD stm32l152xd 138/140 doc id 022027 rev 6 18-apr-2012 3 added wlcsp64 package. section 3.1: low power modes : changed ?128 khz? to ?131 khz? in section ?low power run mode?. section 3.17.1: general-purpose ti mers (tim2, tim3, tim4, tim5, tim9, tim10 and tim11) : changed ?six? to ?seven? synchronizable general-purpose timers. table 9: stm32l15xxd pin definitions on page 37 : updated name of reference manual in footnote 5. i2c updated: footnote 3. from ta bl e 5 5 note about i2c clock updated: footnote 2. from ta bl e 5 5 modified. note [non-robust] updated: footnote 2. from ta bl e 6 5 modified. gpios high current capability updated: section 3.6: gpios (general- purpose inputs/outputs) ?except for analog inputs? was removed. 15-jun-2012 4 changed maximum number of touch sensing channels to 34, and updated table 2: ultra-low-power stm32l15xxd device features and peripheral counts . updated section 3.11: adc (analog-to-digital converter) to add section 3.11.1: te mperature sensor and section 3.11.2: internal voltage reference (vrefint) . removed caution note below figure 11: power supply scheme . added note below table 4: stm32l15xqd ufbga132 ballout . modified table 7: stm32l15xrd wlcsp64 ballout to match top view. changed fsmc_lbar into fsmc_nadv, and i2c1_smbai into i2c1_smba in table 9: stm32l15xxd pin definitions . modified pb10/11/12 for afio4 alternate function, and replaced lbar by nadv for afio12 in table 10: alternate function input/output . updated table 22: typical and maximum current consumptions in stop mode and added note 6 . updated table 23: typical and maximum current consumptions in standby mode . updated t wustop in table 24: typical and maximum timings in low power modes . updated table 25: peripheral current consumption . updated table 57: spi characteristics , added note 1 and note 3 , and applied note 2 to t r(sck) , t f(sck) , t w(sckh) , t w(sckl) , t su(mi) , t su(si) , t h(mi) , and t h(si) . updated i dd maximum value in table 35: flash memory and data eeprom characteristics . table 80. document revision history (continued) date revision changes
STM32L151XD stm32l152xd revision history doc id 022027 rev 6 139/140 25-oct-2012 5 updated features updated figure 1: ultra-low-power stm32l15xxd block diagram added table 5: functionalities depending on the working mode (from run/active down to standby) , and table 4: cpu frequency range depending on dynamic voltage scaling updated figure 5: stm32l15xvd lqfp100 pinout updated table 9: stm32l15xxd pin definitions added note 2 in table 15: embedded reset and power control block characteristics replaced tbd values in table 27: low-speed external user clock characteristics , table 35: flash memory and data eeprom characteristics and table 52: i/o ac characteristics added table 58: i2s characteristics , figure 31: i2s slave timing diagram (philips protocol)(1) and figure 32: i2s master timing diagram (philips protocol)(1) added table 59: sdio characteristics added figure 33: sdio timings updated section 6.3.9: fsmc characteristics updated table 69: temperature sensor characteristics added figure 49: thermal resistance 01-feb-2013 6 removed ahb1/ahb2 and corre cted typo on apb1/apb2 in figure 1: ultra-low-power stm32l15xxd block diagram updated ?op amp? line in table 5: functionalities depending on the working mode (from run/active down to standby) added iwdg and wwdg rows in table 5: functionalities depending on the working mode (from run/active down to standby) added onenand support in section 3.8: fsmc (flexible static memory controller) the comment "hse = 16 mhz(2) (pll on for fhclk above 16 mhz)" replaced by "fhse = fhclk up to 16 mhz included, fhse = fhclk/2 above 16 mhz (pll on)(2)? in table table 19: current consumption in sleep mode updated stop mode current to 1.5 a in ultra-low-power platform replaced bga132 by ufbga132 in table 2: ultra-low-power stm32l15xxd device features and peripheral counts replaced bga132 by ufbga132 in figure 4: stm32l15xqd ufbga132 ballout updated entire section 7: package characteristics table 80. document revision history (continued) date revision changes
STM32L151XD stm32l152xd 140/140 doc id 022027 rev 6 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by two authorized st representatives, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2013 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of STM32L151XD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X